Skip to main content

Forensic DNA Analysis

  • Chapter
  • First Online:
Forensic Medicine

Abstract

Classic haemogenetics involving the analysis of erythrocyte membrane antigens as well as ABO and Rhesus blood group testing no longer plays an important role in modern forensic practice. Thus a brief review is sufficient for the purpose of this chapter. In 1901, Karl Landsteiner (1868–1943) discovered the ABO blood group system. Thanks to Paul Uhlenhuth (1870–1957), it also became possible to differentiate human from animal blood (species-specific protein differentiation). Together, these methods laid the foundations for techniques of attributing biological evidence to a suspect as well as for paternity testing. Other blood group systems of erythrocyte membranes were later discovered, as well as other plasma protein polymorphisms. Attribute systems needed to show:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References and Further Reading

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Andréasson H, Nilsson M, Budowle B, Lundberg H, Allen M (2006) Nuclear and mitochondrial DNA quantification of various forensic materials. Forensic Sci Int 164:56–64

    Article  PubMed  Google Scholar 

  • Bär W, Kratzer A, Mächler M, Schmid W (1988) Postmortem stability of DNA. Forensic Sci Int 39:59–70

    Article  PubMed  Google Scholar 

  • Bataille M, Crainic K, Leterreux M, Durigon M, de Mazancourt P (1999) Multiplex amplification of mitochondrial DNA for human and species identification in forensic evaluation. Forensic Sci Int 99:165–170

    Article  PubMed  CAS  Google Scholar 

  • Bender K, Schneider PM, Rittner C (2000) Application of mtDNA sequence analysis in forensic casework for the identification of human remains. Forensic Sci Int 113:103–107

    Article  PubMed  CAS  Google Scholar 

  • Benschop CC, Wiebosch DC, Klosterman AD, Sijen T (2010) Post-coital vaginal sampling with nylon flocked swabs improves DNA typing. Forensic Sci Int Genet 4:115–121

    Article  PubMed  CAS  Google Scholar 

  • Bond JW, Hammond C (2008) The value of DNA material recovered from crimes scenes. J Forensic Sci 53:797–801

    Article  PubMed  Google Scholar 

  • Brandstatter A, Parson W (2003) Mitochondrial DNA heteroplasmy or artefacts – a matter of the amplification strategy? Int J Legal Med 117:180–184

    Article  PubMed  Google Scholar 

  • Brinkmann B (2004) Forensische DNA-Analytik. Dtsch Arztebl 101:A2329–A2335

    Google Scholar 

  • Brück S, Evers H, Heidorn F, Müller U, Kilper R, Verhoff MA (2011) Single cells for forensic DNA analysis – from evidence material to test tube. J Forensic Sci 56:176–180

    Article  PubMed  Google Scholar 

  • Budowle B, Wilson MR, DiZinno JA, Stauffer C, Fasano MA, Holland MM, Monson KL (1999) Mitochondrial DNA regions HVI and HVII population data. Forensic Sci Int 12:23–35

    Article  Google Scholar 

  • Butler JM (2000) Forensic DNA typing. Academic, San Diego

    Google Scholar 

  • Carracedo A, Bär W, Lincoln PJ, Mayr W, Morling N, Olaisen B, Schneider P, Budowle B, Brinkmann B, Gill P, Holland M, Tully G, Wilson M (2000) DNA Commission of the International Society for Forensic Genetics: guidelines for mitochondrial DNA typing. Forensic Sci Int 110:79–85

    Article  PubMed  CAS  Google Scholar 

  • Carracedo A, Butler JM, Gusmão L, Linacre A, Parson W, Roewer L, Schneider PM (2013) New guidelines fort he publication of genetic population data. Forensic Sci Int Genet 7:217–220

    Article  PubMed  Google Scholar 

  • Cina SJ, Collins KA, Penttenati MJ, Fitts M (2000) Isolation and identification of female DNA on postcoital penile swabs. Am J Forensic Med Pathol 21:97–100

    Article  PubMed  CAS  Google Scholar 

  • Evers H, Heidorn F, Gruber C, Lasczkowski G, Risse M, Dettmeyer R, Verhoff MA (2009) Investigative strategy for the forensic detection of sperm traces. Forensic Sci Med Pathol 5:182–188

    Article  PubMed  CAS  Google Scholar 

  • Forster B (ed) (1986) Praxis der Rechtsmedizin. Thieme, Stuttgart

    Google Scholar 

  • Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A 77:6715–6719

    Article  PubMed  CAS  Google Scholar 

  • Gill P (2001) An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes. Int J Legal Med 114:204–210

    Article  PubMed  CAS  Google Scholar 

  • Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA ‘fingerprints’. Nature 318:577–579

    Article  PubMed  CAS  Google Scholar 

  • Gjertson DW, Brenner CH, Baur MP et al (2007) ISFG: recommendations on biostatistics in paternity testing. Forensic Sci Int Genet 1:223–231

    Article  PubMed  Google Scholar 

  • Gusmao L, Butler JM, Carracedo A et al (2006) DNA Commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis. Int J Legal Med 120:191–200

    Article  PubMed  CAS  Google Scholar 

  • Hochmeister M, Whelan M, Borer UV, Gehrig C, Binda S, Berzlanovich A, Rauch E, Dirnhofer R (1997) Effects of toluidine blue and destaining reagents used in sexual assault examinations on the ability to obtain DNA profiles from postcoital vaginal swabs. J Forensic Sci 42:316–319

    PubMed  CAS  Google Scholar 

  • Hochmeister M, Budowle B, Sparkes R, Rudin O, Gehrig C, Thali M, Schmidt L, Cordier A, Dirnhofer R (1999) Validation studies of an immunochromatographic 1-step test for the forensic identification of human blood. J Forensic Sci 44:597–602

    PubMed  CAS  Google Scholar 

  • Huth A, Vennemann B, Tracasso T, Lutz-Bonengel S, Vennemann M (2013) Apparent versus true gene expression changes of three hypoxia-related genes in autopsy derived tissue and the importance of normalization. Int J Leg Med 127:335–344

    Article  Google Scholar 

  • Jacewicz R, Lewandowski K, Rupa-Matysek J, Jedrzejczyk M, Komarnicki M, Berent J (2013) Genetic investigation of biological materials from patients after stem cell transplantation based on autosomal as well as Y-chromosomal markers. Int J Leg Med 127:359–362

    Article  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Individual-specific ‘fingerprints’ of human DNA. Nature 316:76–79

    Article  PubMed  CAS  Google Scholar 

  • Johnston E, Ames CE, Dagnall KE, Foster J, Daniel BE (2008) Comparison of presumptive blood test kits including hexagon OBTI. J Forensic Sci 53:687–689

    Article  PubMed  CAS  Google Scholar 

  • Kettner M, Ramsthaler F, Schnabel A (2010) “Bubbles” – a spot diagnosis. J Forensic Sci 55:842–844

    Article  PubMed  Google Scholar 

  • Koppelkamm A, Vennemann B, Fracasso T, Lutz-Bonengel S, Schmidt U, Heinrich M (2010) Validation of adequate endogenous reference genes for normalisation of qPCR gene expression data in human post mortem tissue. Int J Leg Med 124:371–380

    Article  Google Scholar 

  • Krawczak M (1999) Informativity assessment for biallelic single nucleotide polymorphisms. Electrophoresis 20:1676–1681

    Article  PubMed  CAS  Google Scholar 

  • Lederer T, Betz P, Seidl S (2001) DNA analysis of fingernail debris using different multiplex systems: a case report. Int J Leg Med 114:263–266

    Article  CAS  Google Scholar 

  • Lincoln PJ (1998) Forensic DNA profiling protocols. Humana Press, Totowa

    Google Scholar 

  • Lutz S, Weisser H-J, Heizmann J, Pollak S (1996) MtDNA as a tool for identification of human remains. Int J Legal Med 109:205–209

    Article  PubMed  CAS  Google Scholar 

  • Lutz S, Weisser H-J, Heizmann J, Pollak S (1997) A third hypervariable region in the human mitochondrial D-loop. Hum Genet 101:384

    PubMed  CAS  Google Scholar 

  • Lutz S, Weisser HJ, Heizmann J, Pollak S (2000) Mitochondrial heteroplasmy among maternally related individuals. Int J Legal Med 113:155–161

    Article  PubMed  CAS  Google Scholar 

  • Lutz-Bonengel S, Schmidt U, Schmitt T, Pollak S (2003) Sequence polymorphisms within the human mitochondrial genes MTATP6, MTATP8 and MTND4. Int J Legal Med 117:133–142

    PubMed  Google Scholar 

  • Lutz-Bonengel S, Schmidt U, Sänger T, Heinrich M, Schneider PM, Pollak S (2008) Analysis of mitochondrial length heteroplasmy in monozygous siblings. Int J Legal Med 122:315–321

    Article  PubMed  CAS  Google Scholar 

  • Maciejewska A, Jakubowska J, Pawlowski R (2013) Whole genome amplification of degraded and nondegraded DNA for forensic purposes. Int J Leg Med 127:309–319

    Article  Google Scholar 

  • Malsom S, Flanagan N, McAlister C, Dixon L (2009) The prevalence of mixed DNA profiles in fingernail samples taken from couples who co-habit using autosomal and Y-STRs. Forensic Sci Int Genet 3:57–62

    Article  PubMed  CAS  Google Scholar 

  • Meißner C, von Wurmb N, Oehmichen M (1997) Detection of the age-dependent 4977 bp deletion of mitochondrial DNA. A pilot study. Int J Legal Med 110:288–291

    Article  PubMed  Google Scholar 

  • Meißner C, von Wurmb N, Schimansky B, Oehmichen M (1999) Estimation of age at death based on quantitation of the 4977 bp deletion of human mitochondrial DNA in skeletal muscle. Forensic Sci Int 105:115–124

    Article  PubMed  Google Scholar 

  • Morling N, Allen RW, Carracedo A et al (2002) Paternity Testing Commission of the International Society of Forensic Genetics: recommendations on genetic investigations in paternity cases. Forensic Sci Int 129:148–157

    Article  PubMed  Google Scholar 

  • Mueller B (1975) Gerichtliche Medizin, 2nd edn. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Nakazono T, Kashimura S, Hayashiba Y, Hara K, Matsusue A, Augustin C (2008) Dual examinations for identification of urine as being from human origin and for DNA-typing from small stains of human urine. J Forensic Sci 53:359–363

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel M, Szibor R, Vollrath O, Augustin C, Edelmann J, Geppert M, Alves C, Gusmão L, Vennemann M, Hou Y, Immel UD, Inturri S, Luo H, Lutz-Bonengel S, Robino C, Roewer L, Rolf B, Sanft J, Shin KJ, Sim JE, Wiegand P, Winkler C, Krawczak M, Hering S (2012) Collaborative genetic mapping of 12 forensic short tandem repeat (STR) loci on the human X chromosome. Forensic Sci Int Genet 6:778–784

    Article  PubMed  CAS  Google Scholar 

  • Pajnic IZ (2013) A comparative analysis of the AmpFISTR Identifiler and PowerPlex 16 autosomal short tandem repeat (STR) amplification kits on the skeletal remains excavated from second world war mass graves in Slovenia. Rom J Leg Med 21:73–78

    Article  Google Scholar 

  • Parson W (2009) Bedeutung der mtDNA-Analyse für forensische Fragestellungen. Rechtsmedizin 19:183–194

    Article  Google Scholar 

  • Parson W, Pegoraro K, Niederstätter H, Föger M, Steinlechner M (2000) Species identification by means of the cytochrome b gene. Int J Legal Med 114:23–28

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer H, Lutz-Bonengel S, Pollak S, Fimmers R, Baur MP, Brinkmann B (2004) Mitochondrial DNA control region diversity in hairs and body fluids of monozygotic triplets. Int J Legal Med 118:71–74

    Article  PubMed  Google Scholar 

  • Ramsthaler F, Schmidt P, Bux R, Potente S, Kaiser S, Kettner M (2012) Drying properties of bloodstains on common indoor surfaces. Int J Leg Med 126:739–746

    Article  Google Scholar 

  • Rand S, Schürenkamp M, Brinkmann B (2002) The GEDNAP (German DNA profiling group) blind trial concept. Int J Legal Med 116:199–206

    PubMed  Google Scholar 

  • Gendiagnostik-Kommission am Robert Koch-Institut (2012) Richtlinie der Gendiagnostik-Kommission (GEKO) für die Anforderungen an die Durchführung genetischer Analysen zur Klärung der Abstammung und an die Qualifikation von ärztlichen und nichtärztlichen Sachverständigen gemäß § 23 Abs. 2 Nr. 4 und Nr. 2b GenDG. In der Fassung vom 17.07.2012 veröffentlicht und in Kraft getreten am 26.07.2012 (URL: http://tinyurl.com/rili2012)

  • Roewer L, Geppert M (2012) Interpretation guidelines of a standard Y-chromosome STR 17-plex PCR-CE assay for crime casework. Methods Mol Biol 830:43–56

    Article  PubMed  CAS  Google Scholar 

  • Roy R (2003) Analysis of human fecal material for autosomal and Y chromosome STR’s. J Forensic Sci 48:1035–1040

    PubMed  CAS  Google Scholar 

  • Schneider PM (2007) Scientific standards for studies in forensic genetics. Forensic Sci Int 165:238–243

    Article  PubMed  CAS  Google Scholar 

  • Schneider PM (2012) Beyond STRs: the role of diallelic markers in forensic genetics. Transfus Med Hemother 39:176–180

    Article  PubMed  Google Scholar 

  • Schyma C, Huckenbeck W, Bonte W (1999) DNA-PCR analysis of bloodstain sampled by the polyvinyl-alcohol method. J Forensic Sci 44:95–99

    PubMed  CAS  Google Scholar 

  • Szibor R (2010) Gebrauch X-chromosomaler Marker in der forensischen Genetik. Rechtsmedizin 20:287–297

    Article  Google Scholar 

  • Szibor R, Krawczak M, Hering S, Edelmann J, Kuhlisch E, Krause D (2003) Use of X-linked markers for forensic purposes. Int J Legal Med 117:67–74

    PubMed  CAS  Google Scholar 

  • Tobe SS, Watson N, Nn D (2007) Evaluation of six presumptive tests for blood, their specifity, and effect on high molecular-weight DNA. J Forensic Sci 52:102–109

    Article  PubMed  CAS  Google Scholar 

  • Tully G, Bär W, Brinkmann B, Carracedo A, Gill P, Morling N, Parson W, Schneider P (2001) Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci Int 124:83–91

    Article  PubMed  CAS  Google Scholar 

  • Verhoff MA, Heidorn F, Oehmke S, Weiler G (2002) Beitrag zur Problematik der DNA-Typisierung von Kot. Rechtsmedizin 12:172–174

    Article  Google Scholar 

  • von Wurmb N, Oehmichen M, Meissner C (1998) Demonstration of the 4977 bp deletion in human mitochondrial DNA from intravital and postmortem blood. Mutat Res 422:247–254

    Article  Google Scholar 

  • Weissenberger M, Reichert W, Mattern R (2011) A Multiplex PCR assay to differentiate between dog and red fox. Forensic Sci Int Genet 5:411–415

    Article  PubMed  CAS  Google Scholar 

  • Wickenheiser RA (2003) Trace DNA: a review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. J Forensic Sci 47:442–450

    Google Scholar 

  • Zehner R, Zimmermann S, Mebs D (1998) RFLP and sequence analysis of the cytochrome b gene of selected animals and man: methodology and forensic application. Int J Legal Med 111:323–327

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dettmeyer, R.B., Verhoff, M.A., Schütz, H.F. (2014). Forensic DNA Analysis. In: Forensic Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38818-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38818-7_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38817-0

  • Online ISBN: 978-3-642-38818-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics