Skip to main content

Effect of the Structures of Ionic Liquids on Their Physical Chemical Properties

  • Chapter
  • First Online:
Structures and Interactions of Ionic Liquids

Part of the book series: Structure and Bonding ((STRUCTURE,volume 151))

Abstract

ILs are referred to as “designer solvents” [1], and one of their most important advantages is that their properties can be tuned/controlled by tailoring their structures. To do this, however, it is crucial to assume that ILs are solvents of which the local structural (that is, electronic and steric) features may be correlated with their properties and then deal with the effect of their cation and anion structures in altering the related properties. This is exactly the subject of this chapter. The structural factors of the cations are focused on the status of alkylation of H atoms on the ring and tail groups (the polar/nonpolar character, the chain length and its flexibility, the cyclic and branched structures, and the functional tail group). The anion characters include the symmetry, the size, the charge delocalization either by large volume of the central atom or by the presence of the perfluoroalkyl chain, the chain length and its flexibility, and the functional group. The general patterns through which the examined properties vary on changing the cation and anion structures are explored and the reasons behind the trends are briefly discussed on the basis of the structural effect on the interactions between the counterpart ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Visser AE, Swatloski RP, Reichert WM et al (2001) Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun 1:135–136

    Google Scholar 

  2. Pitzer KS (1980) Electrolytes. From dilute solutions to fused salts. J Am Chem Soc 102:2902–2906

    CAS  Google Scholar 

  3. Baker SN, Baker GA, Kane MA et al (2001) The cybotactic region surrounding fluorescent probes dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate: effects of temperature and added carbon dioxide. J Phys Chem B 105:9663–9668

    CAS  Google Scholar 

  4. Bonhôte P, Dias AP, Papageorgiou K et al (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Google Scholar 

  5. Geetha S, Trivedi DC (2003) Properties and applications of chloroaluminate as room temperature ionic liquid. Bull Electrochem 19:37–48

    CAS  Google Scholar 

  6. Dupont J, Spencer J (2004) On the noninnocent nature of 1, 3-dialkylimidazolium ionic liquids. Angew Chem Int Ed 43:5296–5297

    CAS  Google Scholar 

  7. Chauvin Y, Mussmann L, Olivier H (1996) A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazoliurn salts. Angew Chem Int Ed 34:2698–2700

    Google Scholar 

  8. Suarez PAZ, Dullius JEL, Einloft S et al (1996) The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron 15:1217–1219

    CAS  Google Scholar 

  9. Singh B, Sekhon SS (2005) Polymer electrolytes based on room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium triflate. J Phys Chem B 109:16539–16543

    CAS  Google Scholar 

  10. Suarez PAZ, Einloft S, Dullius JEL et al (1998) Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J Chim Phys Chim Biol 95:1626–1639

    CAS  Google Scholar 

  11. Dzyuba SV, Bartsch RA (2002) Influence of structural variations in 1-alkyl (aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethyl sulfonyl) imides on physical properties of the ionic liquids. Chemphyschem 3:161–166

    CAS  Google Scholar 

  12. Arce A, Rodriguez O, Soto (2004) Experimental determination of liquid-liquid equilibrium using ionic liquids: tert-amyl ethyl ether + ethanol + 1-octyl-3-methylimidazolium chloride system at 298.15 K. J Chem Eng Data 49:514–517

    CAS  Google Scholar 

  13. Sun J, Forsyth M, MacFarlane DR (1998) Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B 102:8858–8864

    CAS  Google Scholar 

  14. Abbott AP, Capper G, Davies DL et al (2004) Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures. Inorg Chem 43:3447–3452

    CAS  Google Scholar 

  15. Gordon JE, SubbaRao GN (1978) Fused organic salts. 8. Properties of molten straight-chain isomers of tetra-n-pentylammonium salts. J Am Chem Soc 100:7445–7454

    CAS  Google Scholar 

  16. Tokuda H, Hayamizu K, Ishii K et al (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600

    CAS  Google Scholar 

  17. Huddleston JG, Visser AE, Reichert WM et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    CAS  Google Scholar 

  18. Fredlake CP, Crosthwaite JM, Hert DG et al (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:954–964

    CAS  Google Scholar 

  19. Dyson PJ, Laurenczy G, Ohlin CA et al (2003) Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem Commun 19:2418–2419

    Google Scholar 

  20. Gupta OD, Armstrong PD, Shreeve JM (2003) Quaternary trialkyl(polyfluoroalkyl)ammonium salts including liquid iodides. Tetrahedron Lett 44:9367–9370

    CAS  Google Scholar 

  21. MacFarlane DR, Meakin P, Sun J et al (1999) Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. J Phys Chem B 103:4164–4170

    CAS  Google Scholar 

  22. Visser AE, Holbrey JD, Rogers RD (2001) Hydrophobic ionic liquids incorporating N-alkylisoquinolinium cations and their utilization in liquid–liquid separations. Chem Commun 23:2484–2485

    Google Scholar 

  23. Solvent Innovations Technical Product List (2005) http://www.solventinnovation.com/index–overview.htm. Consulted March 2005

  24. Dzyuba SV, Bartsch RA (2002) Expanding the polarity range of ionic liquids. Tetrahedron Lett 43:4657–4659

    CAS  Google Scholar 

  25. Aggarwal A, Lancaster NL, Sethi AR et al (2002) The role of hydrogen bonding in controlling the selectivity of Diels–Alder reactions in room-temperature ionic liquids. Green Chem 4:517–520

    CAS  Google Scholar 

  26. Ross J, Xiao J (2003) The effect of hydrogen bonding on allylic alkylation and isomerization reactions in ionic liquids. Chem Eur J 9:4900–4906

    CAS  Google Scholar 

  27. Chiappe C, Pieraccini DJ (2004) Kinetic study of the addition of trihalides to unsaturated compounds in ionic liquids. Evidence of a remarkable solvent effect in the reaction of ICl2 . Org Chem 69:6059–6064

    CAS  Google Scholar 

  28. Abdul-Sada AK, Greenway AM, Hitchcock PB et al (1986) Upon the structure of room temperature halogenoaluminate ionic liquids. J Chem Soc Chem Commun 1753–1754

    Google Scholar 

  29. Dieter KM, Dymek CJ, Heimer NE et al (1988) Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-A1C13 molten salts. J Am Chem Soc 110:2722–2726

    CAS  Google Scholar 

  30. Avent AG, Chaloner PA, Day MP et al (1994) Evidence for hydrogen bonding in solutions of 1-ethyl-3-methvlimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids. J Chem Soc Dalton Trans 3405–3413

    Google Scholar 

  31. Fuller J, Carlin RT, De Long HC et al (1994) Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J Chem Soc Chem Commun 299–300

    Google Scholar 

  32. Tait S, Osteryoung RA (1984) Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorg Chem 23:4352–4360

    CAS  Google Scholar 

  33. Kolle P, Dronskowski R (2004) Hydrogen bonding in the crystal structures of the ionic liquid compounds butyldimethylimidazolium hydrogen sulfate, chloride, and chloroferrate(II, III). Inorg Chem 43:2803–2809

    Google Scholar 

  34. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 965–967

    Google Scholar 

  35. Hayamizu K, Aihara Y, Nakagawa H (2004) Price, ionic conduction and ion diffusion in binary room-temperature ionic liquids composed of [emim][BF4] and LiBF4. J Phys Chem B 108:19527–19532

    CAS  Google Scholar 

  36. Crowhurst L, Mawdsley PR, Perez-Arlandis JM et al (2003) Solvent–solute interactions in ionic liquids. Phys Chem Chem Phys 5:2790–2794

    CAS  Google Scholar 

  37. Moret ME, Chaplin AB, Lawrence AK et al (2005) Synthesis and characterization of organometallic ionic liquids and a heterometallic carbene complex containing the chromium tricarbonyl fragment. Organometallics 24:4039–4048

    CAS  Google Scholar 

  38. Elaiwi A, Hitchcock PB, Seddon KR et al (1995) Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. J Chem Soc Dalton Trans 3467–3472

    Google Scholar 

  39. Hitchcock PB, Seddon KR, Welton T (1993) Hydrogen-bond acceptor abilities of tetrachlorometalate(II) complexes in ionic liquids. J Chem Soc Dalton Trans 2639–2643

    Google Scholar 

  40. Abdul-Sada AK, Al-Juaid S, Greenway AM et al (1990) Upon the hydrogen-bonding ability of the H4 and H5 protons of the imidazolium cation. Struct Chem 1:391–394

    CAS  Google Scholar 

  41. Amyes TN, Diver ST, Richard JP et al (2004) Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous solution. J Am Chem Soc 126:4366–4374

    CAS  Google Scholar 

  42. Wasserscheid P, Hal R, Bösmann A (2002) 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even ‘greener’ ionic liquid. Green Chem 4:400–404

    CAS  Google Scholar 

  43. Cole AC, Jensen JL, Ntai I et al (2002) Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J Am Chem Soc 124:5962–5963

    CAS  Google Scholar 

  44. Bondi A (1968) Physical properties of molecular crystals, liquids and glasses. Wiley, New York

    Google Scholar 

  45. Dannenfelser RM, Yalkowsky SH (1996) Estimation of entropy of melting from molecular structure: a non-group contribution method. Ind Eng Chem Res 35:1483–1486

    CAS  Google Scholar 

  46. Zhao LW, Yalkowsky SH et al (1999) A combined group contribution and molecular geometry approach for predicting melting points of aliphatic compounds. Ind Eng Chem Res 38:3581–3584

    CAS  Google Scholar 

  47. Branco LC, Crespo JG, Afonso CAM (2002) Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes. Chem Eur J 8:3865–3871

    CAS  Google Scholar 

  48. Przybysz K, Drzewinska E, Stanisławska A et al (2005) Ionic liquids and paper. Ind Eng Chem Res 44:4599–4604

    CAS  Google Scholar 

  49. Branco LC, Crespo JG, Afonso CAM (2002) Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angew Chem Int Ed 41:2771–2773

    CAS  Google Scholar 

  50. Dupont J, Suarez PAZ, De Souza RF et al (2000) C-H-π interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt: solid and solution structures. Chem Eur J 6:2377–2381

    CAS  Google Scholar 

  51. Muldoon MJ, Gordon CM, Dunkin (2001) IR Investigations of solvent–solute interactions in room temperature ionic liquids using solvatochromic dyes. J Chem Soc Perkin Trans 2:433–435

    Google Scholar 

  52. Gozzo FC, Santos LS, Augusti R et al (2004) Gaseous supramolecules of imidazolium ionic liquids: “magic” numbers and intrinsic strengths of hydrogen bonds. Chem Eur J 10:6187–6193

    CAS  Google Scholar 

  53. Van den Broeke J, Winter F, Deelman BJ et al (2002) A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling. Org Lett 4:3851–3854

    Google Scholar 

  54. Berthod A, Ruiz-Angel MJ, Huguet S (2005) Nonmolecular solvents in separation methods: dual nature of room temperature ionic liquids. Anal Chem 77:4071–4080

    CAS  Google Scholar 

  55. Morrow TI, Maginn EJ (2002) Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106:12807–12813

    CAS  Google Scholar 

  56. Hardacre C, McMath SEJ, Nieuwenhuyzen M et al (2003) Liquid structure of 1, 3-dimethylimidazolium salts. J Phys Condens Matter 15:S159–S166

    CAS  Google Scholar 

  57. Lee KM, Lee CK, Lin IJB (1997) First example of interdigitated U-shape benzimidazolium ionic liquid crystals. Chem Commun 899–900

    Google Scholar 

  58. Mayr H, Ofial AR, Wurthwein EU et al (1997) NMR spectroscopic evidence for the structure of iminium ion pairs. J Am Chem Soc 119:12727–12733

    CAS  Google Scholar 

  59. Anderson JL, Ding J, Welton T et al (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254

    CAS  Google Scholar 

  60. Ronig B, Pantenburg I, Wesemann L (2002) Meltable stannaborate salts. Eur J Inorg Chem 2:319–322

    Google Scholar 

  61. Golding JJ, MacFarlane DR, Spiccia L et al (1998) Weak intermolecular interactions in sulfonamide salts: structure of 1-ethyl-2-methyl-3-benzyl imidazolium bis[(trifluoromethyl)sulfonyl]amide. Chem Commun 1593–1594

    Google Scholar 

  62. Koel M (2000) Physical and chemical properties of ionic liquids based on the dialkylimidazolium cation. Proc Estonian Acad Sci Chem 49:145–155

    CAS  Google Scholar 

  63. Kato T (2002) Self-assembly of phase-segregated liquid crystal structures. Science 295:2414–2418

    CAS  Google Scholar 

  64. Kishimoto K, Suzawa T, Yokota T et al (2005) Nano-segregated polymeric film exhibiting high ionic conductivities. J Am Chem Soc 127:15618–15623 and references 1–19 cited therein

    Google Scholar 

  65. Abdallah DJ, Robertson A, Hsu H-F et al (2000) Smectic liquid-crystalline phases of quaternary group VA (especially phosphonium) salts with three equivalent long n-alkyl chains. How do layered assemblies form in liquid-crystalline and crystalline phases? J Am Chem Soc 122:3053–3062

    CAS  Google Scholar 

  66. Zhou GP, Zhang Y, Huang XR et al (2008) Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion. J Colloids Surf B-Biointerfaces 66:146–149

    CAS  Google Scholar 

  67. Pott T, Méléard P (2009) New insight into the nanostructure of ionic liquids: a small angle X-ray scattering (SAXS) study on liquid tri-alkyl-methyl-ammonium bis(trifluoromethanesulfonyl)amides and their mixtures. Phys Chem Chem Phys 11:5469–5475

    CAS  Google Scholar 

  68. Yollner K, Popovitz-Biro R, Lahau M et al (1997) Impact of molecular order in Langmuir–Blodgett films on catalysis. Science 278:2100–2102

    Google Scholar 

  69. Jervis H, Raimondi ME, Raja R et al (1999) Templating mesoporous silicates on surfactant ruthenium complexes: a direct approach to heterogeneous catalysts. J Chem Soc Chem Commun 2031–2032

    Google Scholar 

  70. Antonietti M, Kuang D, Smarsly B et al (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992

    CAS  Google Scholar 

  71. Ding K, Miao Z, Liu Z et al (2007) Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J Am Chem Soc 129:6362–6363

    CAS  Google Scholar 

  72. Xie Y, Ding K, Liu Z et al (2009) In situ controllable loading of ultrafine noble metal particles on titania. J Am Chem Soc 131:6648–6649

    CAS  Google Scholar 

  73. Hu Y-F, Liu Z-C, Xu C-M et al (2011) The molecular characteristics dominating the solubility of gases in ionic liquids. Chem Soc Rev 40:3802–3823

    CAS  Google Scholar 

  74. Rebelo LPN, Canongia Lopes JN, Esperança JMSS et al (2007) Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic and modeling standpoint. Acc Chem Res 40:1114–1121

    CAS  Google Scholar 

  75. Shigeto S, Hamaguchi H (2006) Evidence for mesoscopic local structures in ionic liquids: CARS signal spatial distribution of Cnmim[PF6] (n = 4, 6, 8). Chem Phys Lett 427:329–332

    CAS  Google Scholar 

  76. Triolo A, Russina O, Fazio B et al (2008) Morphology of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids. Chem Phys Lett 457:362–365

    CAS  Google Scholar 

  77. Russina O, Triolo A, Gontrani L et al (2009) Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: structural and dynamic evidence of nanoscale segregation. J Phys Condens Matter 21:424121-1– 424121-9

    Google Scholar 

  78. Russina O, Beiner M, Pappas C et al (2009) Temperature dependence of the primary relaxation in 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide. J Phys Chem B 113:8469–8474

    CAS  Google Scholar 

  79. Wang Y, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127:12192–12193

    CAS  Google Scholar 

  80. Canongia Lopes JNA, Gomes MFC, Pádua AAH (2006) Nonpolar, polar, and associating solutes in ionic liquids. J Phys Chem B 110:16816–16818

    Google Scholar 

  81. Seduraman A, Klähn M, Wu P (2009) Characterization of nano-domains in ionic liquids with molecular simulations. Calphad 33:605–613

    CAS  Google Scholar 

  82. Wang Y, Voth GA (2006) Tail aggregation and domain diffusion in ionic liquids. J Phys Chem B 110:18601–18608

    CAS  Google Scholar 

  83. Raju SG, Balasubramanian S (2009) Emergence of nanoscale order in room temperature ionic liquids: simulation of symmetric 1,3-didecylimidazolium hexafluorophosphate. J Mater Chem 19:4343–4347

    CAS  Google Scholar 

  84. Sarangi SS, Bhargava BL, Balasubramanian S (2009) Nanoclusters of room temperature ionic liquids: a molecular dynamics simulation study. Phys Chem Chem Phys 11:8745–8751

    CAS  Google Scholar 

  85. Iwata K, Okajima H, Saha S et al (2007) Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear Raman spectroscopy. Acc Chem Res 40:1174–1181

    CAS  Google Scholar 

  86. Xiao D, Hines LG Jr, Li S et al (2009) Effect of cation symmetry and alkyl chain length on the structure and intermolecular dynamics of 1, 3-dialkylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids. J Phys Chem B 113:6426–6433

    CAS  Google Scholar 

  87. Margulis C (2004) Computational study of imidazolium-based ionic solvents with alkyl substituents of different lengths. J Mol Phys 102:829–838

    CAS  Google Scholar 

  88. Shimizu K, Tariq M, Rebelo LPN et al (2010) Binary mixtures of ionic liquids with a common ion revisited: a molecular dynamics simulation study. J Mol Liq 153:52–56

    CAS  Google Scholar 

  89. Wang YT, Jiang W, Yan TY et al (2007) Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. Acc Chem Res 40:1193–1199

    CAS  Google Scholar 

  90. Pádua AAH, Costa Gomes MF, Canongia Lopes JNA (2007) Molecular solutes in ionic liquids: a structural perspective. Acc Chem Res 40:1087–1096

    Google Scholar 

  91. Hu Z, Margulis CJ (2007) Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect. Acc Chem Res 40:1097–1105

    CAS  Google Scholar 

  92. Pópolo MGD, Kohanoff J, Lynden-bell RM et al (2007) Clusters, liquids, and crystals of dialkyimidazolium salts. A combined perspective from ab initio and classical computer simulations. Acc Chem Res 40:1156–1164

    Google Scholar 

  93. Urahata SM, Ribeiro MCC (2004) Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: a systematic computer simulation study. J Chem Phys 120:1855–1863

    CAS  Google Scholar 

  94. Canongia Lopes JNA, Pádua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335

    CAS  Google Scholar 

  95. Wakasa M, Yago T, Hamasaki A (2009) Nanoscale heterogeneous structure of ionic liquid as revealed by magnetic field effects. J Phys Chem B 113:10559–10561

    CAS  Google Scholar 

  96. Mandal PK, Sarkar M, Samanta A (2004) Excitation-wavelength-dependent fluorescence behavior of some dipolar molecules in room-temperature ionic liquids. J Phys Chem A 108:9048–9053

    CAS  Google Scholar 

  97. Santos LMNBF, Lopes JNC, Coutinho JAP et al (2007) Ionic liquids: first direct determination of their cohesive energy. J Am Chem Soc 129:284–285

    CAS  Google Scholar 

  98. Paul A, Mandal PK, Samanta A (2005) On the optical properties of the imidazolium ionic liquids. J Phys Chem B 109:9148–9153

    CAS  Google Scholar 

  99. Tokuda H, Hayamizu K, Ishii K et al (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110

    CAS  Google Scholar 

  100. Hamaguchi H-O, Ozawa R (2005) Structure of ionic liquids and ionic liquid compounds are ionic liquids genuine liquids in the conventional sense? Adv Chem Phys 131:85–104

    CAS  Google Scholar 

  101. Berg RW (2007) Raman spectroscopy and ab-initio model calculations on ionic liquids. Monatshefte für Chemie 138:1045–1075

    CAS  Google Scholar 

  102. Hu ZH, Margulis C (2006) Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. J Proc Natl Acad Sci 103:831–836

    CAS  Google Scholar 

  103. Bhargava BL, Devane R, Klein ML et al (2007) Nanoscale organization in room temperature ionic liquids: a coarse grained molecular dynamics simulation study. Soft Matter 3:1395–1400

    CAS  Google Scholar 

  104. Triolo A, Russina O, Bleif H-J et al (2007) Nanoscale segregation in room temperature ionic liquids. J Phys Chem B 111:4641–4644

    CAS  Google Scholar 

  105. Xiao D, Rajian JR, Cady A et al (2007) Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids. J Phys Chem B 111:4669–4677

    CAS  Google Scholar 

  106. De Andrade J, Böes ES, Stassen H (2002) Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium cations–force-field proposal and validation. J Phys Chem B 106:13344–13351

    Google Scholar 

  107. Gordon CM, Holbrey JD, Kennedy A et al (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem 8:2627–2636

    CAS  Google Scholar 

  108. Bowlas CJ, Bruce DW, Seddon KR (1996) Liquid-crystalline ionic liquids. J Chem Soc Chem Commun 14:1625–1626

    Google Scholar 

  109. Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 2133–2139

    Google Scholar 

  110. Hardacre C, Holbrey JD, McCormac PB et al (2001) Crystal and liquid crystalline polymorphism in 1-alkyl-3-methylimidazolium tetrachloropalladate(II) salts. J Mater Chem 11:346–350

    CAS  Google Scholar 

  111. Bradley AE, Hardacre C, Holbrey JD et al (2002) Small-angle X-ray scattering studies of liquid crystalline 1-alkyl-3-methylimidazolium salts. Chem Mater 14:629–635

    CAS  Google Scholar 

  112. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    CAS  Google Scholar 

  113. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407

    Google Scholar 

  114. Zhao DB, Zhao FF, Scopelliti R et al (2004) Synthesis and characterization of ionic liquids incorporating the nitrile functionality. Inorg Chem 43:2197–2205

    CAS  Google Scholar 

  115. Larsen AS, Holbrey JD, Tham FS et al (2000) Designing ionic liquids: imidazolium melts with inert carborane anions. J Am Chem Soc 122:7264–7272

    CAS  Google Scholar 

  116. Law G, Watson PR (2001) Surface tension measurements of n-alkylimidazolium ionic liquids. Langmuir 17:6138–6141

    CAS  Google Scholar 

  117. Carter EB, Culver SL, Fox PA et al (2004) Sweet success: ionic liquids derived from non-nutritive sweeteners. Chem Commun 630–631

    Google Scholar 

  118. Ohno H, Yoshizawa M (2002) Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles. Solid State Ion 154:303–309

    Google Scholar 

  119. McEwen AB, Ngo HL, LeCompte K et al (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687–1695

    CAS  Google Scholar 

  120. Ngo HL, LeCompte K, Hargens L et al (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102

    Google Scholar 

  121. Zhou ZB, Matsumoto H, Tatsumi K (2005) Structure and properties of new ionic liquids based on alkyl- and alkenyltrifluoroborates. Chemphyschem 6:1324–1332

    CAS  Google Scholar 

  122. Yoshida Y, Muroi K, Otsuka A et al (2004) 1-Ethyl-3-methylimidazolium based ionic liquids containing cyano groups: synthesis, characterization, and crystal structure. Inorg Chem 43:1458–1462

    CAS  Google Scholar 

  123. Hagiwara R, Hirashige T, Tsuda T et al (1999) Acidic 1-ethyl-3-methylimidazolium fluoride: a new room temperature ionic liquid. J Fluorine Chem 99:1–3

    CAS  Google Scholar 

  124. Fuller J, Carlin RT, Osteryoung RA et al (1997) The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J Electrochem Soc 144:3881–3885

    CAS  Google Scholar 

  125. Matsumoto K, Hagiwara R, Yoshida R et al (2004) Syntheses, structures and properties of 1-ethyl-3-methylimidazolium salts of fluorocomplex anions. Dalton Trans 1:144–149

    Google Scholar 

  126. Nishida T, Tashiro Y, Yamamoto M (2003) Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J Fluorine Chem 120:135–141

    CAS  Google Scholar 

  127. Noda A, Hayamizu K, Watanabe M (2001) Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J Phys Chem B 105:4603–4016

    CAS  Google Scholar 

  128. Matsumoto H, Yanagida M, Tanimoto K et al (2000) Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem Lett 29:922–923

    Google Scholar 

  129. Zhang J, Wu W, Jiang T et al (2003) Conductivities and viscosities of the ionic liquid [bmim][PF6] + water + ethanol and [bmim][PF6] + water + acetone ternary mixtures. J Chem Eng Data 48:1315–1317

    CAS  Google Scholar 

  130. Okoturo OO, VanderNoot TJ (2004) Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem 568:167–181

    CAS  Google Scholar 

  131. Noda A, Watanabe M (2000) Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta 45:1265–1270

    CAS  Google Scholar 

  132. Domanska U, Marciniak A (2005) Liquid phase behaviour of 1-hexyloxymethyl-3-methyl-imidazolium-based ionic liquids with hydrocarbons: the influence of anion. J Chem Thermodyn 37:577–585

    CAS  Google Scholar 

  133. Suarez PAZ, Selbach VM, Dullius JEL et al (1997) Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts. Electrochim Acta 42:2533–2535

    CAS  Google Scholar 

  134. Wilkes JS, Levisky JA, Wilson RA et al (1982) Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry spectroscopy, and synthesis. Inorg Chem 21:1263–1264

    CAS  Google Scholar 

  135. Carmichael AJ, Hardacre C, Holbrey JD et al (1999) In: Truelove PC, De Long HC, Stafford GR et al (eds) Eleventh international symposium on molten salts. The Electrochemical Society, Pennington

    Google Scholar 

  136. Fannin AA Jr, Floreani DA, King LA et al (1984) Properties of 1, 3-dialkylimldazollum chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities. J Phys Chem 88:2614–2621

    CAS  Google Scholar 

  137. Ye C, Shreeve JM (2004) Syntheses of very dense halogenated liquids. J Org Chem 69:6511–6513

    CAS  Google Scholar 

  138. Crosthwaite JM, Muldoon MJ, Dixon JK et al (2005) Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn 37:559–568

    CAS  Google Scholar 

  139. Singh RP, Winter RW, Gard GL et al (2003) Quaternary salts containing the pentafluorosulfanyl (SF5) group. Inorg Chem 42:6142–6146

    CAS  Google Scholar 

  140. Hasan M, Ivan V, Kozhevnikov M et al (1999) Gold compounds as ionic liquids. synthesis, structures, and thermal properties of N, N-dialkylimidazolium tetrachloroaurate salts. Inorg Chem 38:5637–5638

    CAS  Google Scholar 

  141. Cooper EI, O’Sullivan EJM (2000) In: Gale RJ, Blomgren G (eds) Proceedings of the eighth international symposium on molten salts. The Electrochemical Society, Pennington

    Google Scholar 

  142. Ma M, Johnson KE (1994) In: Hussey CL, Newman DS, Mamantov G et al (eds) Proceedings of the ninth international symposium on molten salts. The Electrochemical Society, Pennington

    Google Scholar 

  143. Matsumoto K, Hagiwara R (2005) A new room temperature ionic liquid of oxyfluorometallate anion: 1-ethyl-3-methylimidazolium oxypentafluorotungstate (EMImWOF5). J Fluorine Chem 126:1095–1100

    CAS  Google Scholar 

  144. Mu ZG, Zhou F, Zhang SX et al (2005) Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact. Tribol Int 38:725–731

    CAS  Google Scholar 

  145. Guillet E, Imbert D, Scopelliti R et al (2004) Tuning the emission color of europium-containing ionic liquid-crystalline phases. Mater Chem 16:4063–4073

    CAS  Google Scholar 

  146. Dzyuba SV, Bartsch RA (2001) New room-temperature ionic liquids with C2-symmetrical imidazolium cations. Chem Commun 1466–1467

    Google Scholar 

  147. Sun J, MacFarlane DR, Forsyth M (2003) A new family of ionic liquids based on the 1-alkyl-2-methyl pyrrolinium cation. Electrochim Acta 48:1707–1711

    CAS  Google Scholar 

  148. Carpio RA, King LA, Lindstrom RE et al (1979) Density, electric conductivity, and viscosity of several N-alkylpyridinium halides and their mixtures with aluminum chloride. J Electrochem Soc 126:1644–1650

    CAS  Google Scholar 

  149. Widegren JA, Saurer EM, Marsh KN et al (2005) Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J Chem Thermodyn 37:569–575

    CAS  Google Scholar 

  150. Neve F, Imperor-Clerc M (2004) An Ia3 ̄d thermotropic cubic phase from N-alkylpyridinium tetrahalocuprates. Liq Cryst 31:907–912

    CAS  Google Scholar 

  151. Taubert A, Steiner P, Mantion A (2005) Ionic liquid crystal precursors for inorganic particles: phase diagram and thermal properties of a CuCl nanoplatelet precursor. J Phys Chem B 109:15542–15547

    CAS  Google Scholar 

  152. Taubert A (2004) CuCl nanoplatelets from an ionic liquid-crystal precursor. Angew Int Ed Chem 43:5380–5382

    CAS  Google Scholar 

  153. Egashira M, Okadab S, Yamaki J et al (2005) Effect of small cation addition on the conductivity of quaternary ammonium ionic liquids. Electrochim Acta 50:3708–3712

    CAS  Google Scholar 

  154. Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  155. Fei ZF, Zhao DB, Scopelliti R et al (2004) Organometallic complexes derived from alkyne-functionalized imidazolium salts. Organometallics 23:1622–1628

    CAS  Google Scholar 

  156. Zhao DB, Fei ZF, Geldbach TJ et al (2004) Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions. J Am Chem Soc 126:15876–15882

    CAS  Google Scholar 

  157. Pringle JM, Golding J, Forsyth CM et al (2002) Physical trends and structural features in organic salts of the thiocyanate anion. J Mater Chem 15:3475–3480

    Google Scholar 

  158. Yoshizawa M, Ogihara M, Ohno H (2001) Design of new ionic liquids by neutralization of imidazole derivatives with imide-type acids. Electrochem Solid Lett 4:E25–E27

    CAS  Google Scholar 

  159. Kim KS, Choi S, Demberelnyamba D et al (2004) Ionic liquids based on N-alkyl-N-methylmorpholinium salts as potential electrolytes. Chem Commun 828–829

    Google Scholar 

  160. Chun S, Dzyuba SV, Bartsch RA (2001) Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 73:3737–3741

    CAS  Google Scholar 

  161. Holbrey JD, Turner MB, Reichert WM et al (2003) New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide. Green Chem 5:731–736

    CAS  Google Scholar 

  162. Branco LC, Rosa JN, Moura Ramos JJ et al (2002) Preparation and characterization of new room temperature ionic liquids. Chem Eur J 8:3671–3677

    CAS  Google Scholar 

  163. Fraga-Dubreuil J, Famelart MH, Bazureau JP (2002) Ecofriendly fast synthesis of hydrophilic poly (ethyleneglycol)-ionic liquid matrices for liquid-phase organic synthesis. Org Process Res Dev 6:374–378

    CAS  Google Scholar 

  164. Xu W, Cooper EI, Angell CA (2003) Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B 107:6170–6178

    CAS  Google Scholar 

  165. Ohno H, Nishimura N (2001) Ion conductive characteristics of DNA film containing ionic liquids. J Electrochem Soc 148:E168–E170

    CAS  Google Scholar 

  166. Pringle JM, Golding J, Baranyai K et al (2003) The effect of anion fluorination in ionic liquids—physical properties of a range of bis(methanesulfonyl)amide salts. New J Chem 27:1504–1510

    CAS  Google Scholar 

  167. Del Sesto RE, Corley C, Robertson A et al (2005) Tetraalkylphosphonium-based ionic liquids. J Organometallic Chem 690:2536–2542

    Google Scholar 

  168. Xue H, Arritt SW, Twamley B et al (2004) Energetic salts from N-aminoazoles. Inorg Chem 43:7972–7977

    CAS  Google Scholar 

  169. Katritzky AR, Singh S, Kirichenko K et al (2005) 1-Butyl-3-methylimidazolium 3,5-dinitro-1,2,4-triazolate: a novel ionic liquid containing a rigid, planar energetic anion. Chem Commun 868–870

    Google Scholar 

  170. Kim JW, Singh RP, Shreeve JM (2004) Low melting inorganic salts of alkyl-, fluoroalkyl-, alkyl ether-, and fluoroalkyl ether-substituted oxazolidine and morpholine. Inorg Chem 43:2960–2966

    CAS  Google Scholar 

  171. Tao G, He L, Sun N et al (2005) New generation ionic liquids: cations derived from amino acids. Chem Commun 3562–3564

    Google Scholar 

  172. Pernak J, Feder-Kubis J (2005) Synthesis and properties of chiral ammonium-based ionic liquids. Chem Eur J 11:4441–4449

    CAS  Google Scholar 

  173. Jin CM, Twamley B, Shreeve JM (2005) Low-melting dialkyl- and bis(polyfluoroalkyl)-substituted 1,1′-methylenebis(imidazolium) and 1,1′−methylenebis(1,2,4-triazolium) bis(trifluoromethanesulfonyl)amides: ionic liquids leading to bis(N-heterocyclic carbene) complexes of palladium. Organometallics 24:3020–3023

    CAS  Google Scholar 

  174. Baranyai KJ, Deacon GB, MacFarlane DR et al (2004) Thermal degradation of ionic liquids at elevated temperatures. Aust J Chem 57:145–147

    CAS  Google Scholar 

  175. Ignatev NV, Welz-Biermann U, Kucheryna A et al (2005) New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions. J Fluorine Chem 126:1150–1159

    CAS  Google Scholar 

  176. Zhang SM, Hou YM, Huang WG et al (2005) Preparation and characterization of novel ionic liquid based on benzotriazolium cation. Electrochim Acta 50:4097–4103

    CAS  Google Scholar 

  177. Oxley JD, Prozorov T, Suslick KS (2003) Sonochemistry and sonoluminescence of room-temperature ionic liquids. J Am Chem Soc 125:11138–11139

    CAS  Google Scholar 

  178. Gao Y, Twamley B, Shreeve JM (2004) The first (ferrocenylmethyl) imidazolium and (ferrocenylmethyl)triazolium room temperature ionic liquids. Inorg Chem 43:3406–3412

    CAS  Google Scholar 

  179. Gu Z, Brennecke JF (2002) Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J Chem Eng Data 47:339–345

    CAS  Google Scholar 

  180. Domańska U, Marciniak A (2003) Solubility of 1-alkyl-3-methylimidazolium hexafluorophosphate in hydrocarbons. J Chem Eng Data 48:451–456

    Google Scholar 

  181. Letcher TM, Reddy P (2004) Ternary liquid–liquid equilibria for mixtures of 1-hexyl-3-methylimidozolium (tetrafluoroborate or hexafluorophosphate) + ethanol + an alkene at T = 298.2K. Fluid Phase Equilib 219:107–112

    CAS  Google Scholar 

  182. Morgan D, Ferguson L, Scovazzo P et al (2005) Diffusivities of gases in room-temperature ionic liquids: data and correlations obtained using a lag-time technique. Ind Eng Chem Res 44:4815–4823

    CAS  Google Scholar 

  183. Rebelo LPN, Najdanovic-Visak V, Gomes de Azevedo R et al (2005) Phase behavior and thermodynamic properties of ionic liquids, ionic liquid mixtures, and ionic liquid solutions. In: Rogers RD, Seddon KR (eds) Ionic liquids IIIA: fundamentals, progress, challenges, and opportunities–properties and structure, ACS Symp Ser 901. American Chemical Society, Washington, DC

    Google Scholar 

  184. Gomes de Azevedo R, Esperança JMSS, Szydlowski J et al (2005) Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [bmim][NTf2] and [hmim][NTf2]. J Chem Thermodyn 37:888–899

    CAS  Google Scholar 

  185. Letcher TM, Deenadayalu N, Soko B et al (2003) Ternary liquid-liquid equilibria for mixtures of 1-methyl-3-octylimidazolium chloride + an alkanol + an alkane at 298.2 K and 1 bar. J Chem Eng Data 48:904–907

    CAS  Google Scholar 

  186. Soriano AN, Doma BT Jr, Li MH (2009) Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. J Chem Thermodyn 41:301–307

    CAS  Google Scholar 

  187. Gomes de Azevedo R, Esperança JMSS, Najdanovic-Visak V et al (2005) Thermophysical and thermodynamic properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate over an extended pressure range. J Chem Eng Data 50:997–1008

    Google Scholar 

  188. Carda-Broch S, Berthod A, Armstrong DW (2003) Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem 375:191–199

    CAS  Google Scholar 

  189. Wang J, Tian Y, Zhao Y et al (2003) A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and n, n –dimethylformamide. Green Chem 5:618–622

    CAS  Google Scholar 

  190. Kabo GJ, Blokhin AV, Paulechka YU et al (2004) Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the condensed state. J Chem Eng Data 49:453–461

    CAS  Google Scholar 

  191. Lee SH, Lee SB (2005) The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids. Chem Commun 3469–3471

    Google Scholar 

  192. Harris KR, Woolf LA, Kanakubo M (2005) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Chem Eng Data 50:1777–1782

    CAS  Google Scholar 

  193. Zafarani-Moattar MT, Shekaari H (2005) Volumetric and speed of sound of ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate with acetonitrile and methanol at T = (298.15–318.15) K. J Chem Eng Data 50:1694–1699

    CAS  Google Scholar 

  194. Fadeev AG, Meagher MM (2001) Opportunities for ionic liquids in recovery of biofuels. Chem Commun 295–296

    Google Scholar 

  195. Huo Y, Xia S, Ma P (2007) Densities of ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium tetrafluoroborate, with benzene, acetonitrile, and 1-propanol at T = (293.15 to 343.15) K. J Chem Eng Data 52:2077–2082

    CAS  Google Scholar 

  196. Liu JF, Jiang GB, Yg C et al (2003) Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Chem 75:5870–5876

    CAS  Google Scholar 

  197. Hyun BR, Dzyuba SV, Bartsch RA et al (2002) Intermolecular dynamics of room-temperature ionic liquids: femtosecond optical Kerr effect measurements on 1-alkyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imides. J Phys Chem A 106:7579–7585

    CAS  Google Scholar 

  198. Krummen M, Wasserscheid P, Gmehling J (2002) Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. J Chem Eng Data 47:1411–1417

    CAS  Google Scholar 

  199. Luo H, Dai S, Bonnesen PV (2004) Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers. Anal Chem 76:2773–2779

    CAS  Google Scholar 

  200. Paulechka YU, Blokhin AV, Kabo GJ et al (2007) Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis(triflamides). J Chem Thermodyn 39:866–877

    CAS  Google Scholar 

  201. Rebelo LPN, Najdanovic-Visak V, Visak ZP et al (2004) A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions. Green Chem 6:369–381

    CAS  Google Scholar 

  202. Triolo A, Russina O, Hardacre C et al (2005) Relaxation processes in room temperature ionic liquids: the case of 1-butyl-3-methyl imidazolium hexafluorophosphate. J Phys Chem B 109:22061–22066

    CAS  Google Scholar 

  203. Pereiro AB, Rodríguez A (2007) Thermodynamic properties of ionic liquids in organic solvents from (293.15 to 303.15) K. J Chem Eng Data 52:600–608

    CAS  Google Scholar 

  204. Troncoso J, Cerdeiriña CA, Sanmamed YA et al (2006) Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J Chem Eng Data 51:1856–1859

    CAS  Google Scholar 

  205. Li W, Zhang Z, Han B et al (2007) Effect of water and organic solvents on the ionic dissociation of ionic liquids. J Phys Chem B 111:6452–6456

    CAS  Google Scholar 

  206. Heintz A, Klasen D, Lehmann JK et al (2005) Excess molar volumes and liquid–liquid equilibria of the ionic liquid 1-methyl-3-octyl-imidazolium tetrafluoroborate mixed with butan-1-ol and pentan-1-ol. J Solut Chem 34:1135–1144

    CAS  Google Scholar 

  207. Fu D, Sun X, Pu J et al (2006) Effect of water content on the solubility of CO2 in the ionic liquid [bmim][PF6]. J Chem Eng Data 51:371–375

    CAS  Google Scholar 

  208. Gardas RL, Freire MG, Carvalho PJ et al (2007) High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J Chem Eng Data 52:80–88

    CAS  Google Scholar 

  209. Pereiro AB, Tojo E, Rodríguez A et al (2006) Properties of ionic liquid HMIMPF6 with carbonates, ketones and alkyl acetates. J Chem Thermodyn 38:651–661

    CAS  Google Scholar 

  210. Rebelo LPN, Canongia Lopes JN, Esperança JMSS et al (2005) On the critical temperature, normal boiling point, and vapour pressure of ionic liquids. J Phys Chem B 109:6040–6044

    CAS  Google Scholar 

  211. Canongia Lopes JN, Cordeiro TC, Esperança JMSS et al (2005) Deviations from ideality in mixtures of two ionic liquids containing a common ion. J Phys Chem B 109:3519–3525

    Google Scholar 

  212. Sanmamed YA, González-Salgado D, Troncoso J et al (2007) Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib 252:96–102

    CAS  Google Scholar 

  213. Zhou ZB, Matsumoto H, Tatsumi K (2004) Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem Eur J 10:6581–6591

    CAS  Google Scholar 

  214. Tomida D, Kumagai A, Qiao K et al (2006) Viscosity of [bmim][PF6] and [bmim][BF4] at high pressure. Int J Thermophys 27:39–47

    CAS  Google Scholar 

  215. Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 52:1080–1085

    CAS  Google Scholar 

  216. Harris KR, Kanakubo M, Woolf LA (2006) Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. J Chem Eng Data 51:1161–1167

    CAS  Google Scholar 

  217. Seddon KR, Stark A, Torres MJ (2002) Viscosity and density of 1-alkyl-3methylimidazolium ionic liquids. In: Abraham M, Moens L (eds) Clean solvents: alternative media for chemical reactions and processing. ACS Symp Ser, American Chemical Society, Washington, DC

    Google Scholar 

  218. Jacquemin J, Husson P, Padua AAH et al (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180

    CAS  Google Scholar 

  219. Arce A, Rodríguez O, Soto A (2004) tert-Amyl ethyl ether separation from its mixtures with ethanol using the 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid: liquid-liquid equilibrium. Ind Eng Chem Res 43:8323–8327

    CAS  Google Scholar 

  220. Yang JZ, Lu XM, Gui JS et al (2004) A new theory for ionic liquids—the Interstice Model Part 1. The density and surface tension of ionic liquid EMISE. Green Chem 6:541–543

    CAS  Google Scholar 

  221. Yang JZ, Lu XM, Gui JS et al (2005) Volumetric properties of room temperature ionic liquid. 2. The concentrated aqueous solutions of 1-methyl-3-ethylimidazolium ethyl sulfate + water in a temperature range of 278.2 K to 338.2 K. J Chem Thermodyn 37:1250–1255

    CAS  Google Scholar 

  222. Arce A, Rodil E, Soto A (2006) Volumetric and viscosity study for the mixtures of 2-ethoxy-2-methylpropane, ethanol, and 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid. J Chem Eng Data 51:1453–1457

    CAS  Google Scholar 

  223. Comminges C, Barhdadi R, Laurent M et al (2006) Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: ionic liquids + molecular solvents. J Chem Eng Data 51:680–685

    CAS  Google Scholar 

  224. Gómez E, González B, Calvar N et al (2006) Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. J Chem Eng Data 51:2096–2102

    Google Scholar 

  225. Scopigno T, Ruocco G, Sette F et al (2003) Is the fragility of a liquid embedded in the properties of its glass? Science 302:849–852

    CAS  Google Scholar 

  226. Abraham MA, Moens L (2002) Clean solvents. Alternative media for chemical reactions and processing. American Chemical Society, Washington, DC

    Google Scholar 

  227. Seddon KR, Stark A, Torres M (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. J Pure Appl Chem 72:2275–2287

    CAS  Google Scholar 

  228. Kitaoka S, Nobuoka K, Ishikawa Y (2005) Ionic liquids for tetraarylporphyrin preparation. Tetrahedron 61:7678–7685

    CAS  Google Scholar 

  229. McFarlane DR, Sun AJ, Golding J et al (2000) High conductivity molten salts based on the imide ion. Electrochim Acta 45:1271–1278

    CAS  Google Scholar 

  230. Sudhir NVKA, Brennecke JF, Samanta A (2001) How polar are room-temperature ionic liquids? Chem Commun 413–414

    Google Scholar 

  231. Marsh KN, Boxall JA, Lichtenthaler R (2004) Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib 219:93–98

    CAS  Google Scholar 

  232. Zhou ZB, Matsumoto H, Tatsumi K (2004) Low-viscous, low-melting, hydrophobic ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethyltrifluoroborate. Chem Lett 33:680–681

    CAS  Google Scholar 

  233. Nanjundiah C, McDevitt F, Koch VR (1997) Differential capacitance measurements in solvent-free ionic liquids at Hg and C interfaces. J Electrochem Soc 144:3392–3397

    CAS  Google Scholar 

  234. Noda A, Watanabe M (1999) Abstracts of annual meeting of the Electrochemical Society of Japan, p 309

    Google Scholar 

  235. Ito K, Nishina N, Ohno H (2000) Enhanced ion conduction in imidazolium-type molten salts. Electrochim Acta 45:1295–1298

    CAS  Google Scholar 

  236. Golding J, MacFarlane DR, Forsyth M (1998) Imidazolium room temperature molten salt systems. Molten Salt Forum 5–6:589–592

    Google Scholar 

  237. Zhou ZB, Takeda M, Ue M (2004) New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions. J Fluorine Chem 125:471–476

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Hu .

Editor information

Editors and Affiliations

Glossary of Abbreviations

Abbreviations

Full Names

IL

Ionic liquid

[C n mim]+

1-Alkyl-3-methylimidazolium

[2-MeC n mim]+

1-Alkyl-2,3-dimethylimidazolium

[2-MeC n im]+

1-Alkyl-2-methylimidazolium

[C10C10im]+

1,3-Didecylimidazolium

[(C2)2im]+

1,3-Diethylimidazolium

[C n im]+

1-Alkyllimidazolium

[2-EtC2mim]+

1,2-Diethyl-3-methylimidazolium

[C n (C2im)2]+

α, ω-Diimidazoliumethylene

[(C n )2im]+

1,3-Dialkylimidazolium

[C4C2im]+

1-Butyl-3-ethylimidazolium

[i-C3mim]+

1-iso-Propyl-3-methylimidazolium

[C n Isoq]+

N-Alkyl-isoquinolinium

[M5I]+

Pentamethylimidazolium

[P1,n ]+

n-Alkyl-N-methylpyrrolidinium

[C n Py]+

1-Alkyl-pyridinium

[C n -3-MePy]+

1-Alkyl-3-methylpyridinium

[C n -4-MePy]+

1-Alkyl-4-methylpyridinium

[\( {{\mathrm{ N}}_{{{n_1},{n_2},{n_3},{n_4}}}} \)]+

Quaternary ammonium

[HC ≡ CCH2mim]+

1-(2-Propynyl)-3-methylimidazolium

[CH3CH(OH)CH2mim]+

1-(2-Hydroxypropyl)-3-methylimidazolium

[(CH2)2OHmim]+

1-(2-Hydroxyethyl)-3-methylimidazolium

[CF3CH2mim]+

1-(2,2,2-Trifluoroethyl)-3-methylimidazolium

[NC(CH2) n mim]+

1-Alkylnitrile-3-methylimidazolium

[PEG n mim]+

1-(2-Hydroxy-ethyl) n -3-methylimidazolium

[PEG n C3im]+

1-(2-Hydroxy-ethyl) n -3-propylimidazolium

[CF3(CH2)2mim]+

1-Methyl-3-trifluoropropylimidazolium

[NC(CH2)3Py]+

N-Butyronitrile pyridinium

[Ph(CH2) n mim]+

1-(ω-Phenylalkyl)-3-methylimidazolium

[AuCl4]

Tetrachloroaurate

[AlCl4]

Tetrachloroaluminate

[TA]

Trifluoroacetate

[HB]

Heptafluorobutanoates

[BETI]

Bis(perfluoroethylsulfonyl)imide

[AcO]

Acetate

[Barf]

Tetrakis[p-dimethyl(1H,1H,2H,2H-perfluorooctyl)silylphenyl]-borate

[SbF6]

Hexafluoroantimonate

[AsF6]

Hexafluoroarsenate

[BPh4]

Tetraphenylborate

[NfO]

Nonaflate

[TfO]

Trifluoromethanesulfonate

[Tf2N]

Bis(trifluoromethylsulfonyl)imide

[DCA]

Dicyanamide

[Sac]

Saccharinate

[Me]

Tris(trifluoromethylsulfonyl)methide

[N(CH3SO2)2]

Bis(methane sulfonyl)amide

[CB11H12]

Carborane

[1-C n CB11H11]

1-Alkylcarborane

[(C2F5)3PF3]

Tris(pentafluoroethyl)trifluorophosphate

[(n-C3F7)3PF3]

Tris(heptafluoropropyl)trifluorophosphate

[C n BF3]

Alkyltrifluoroborate

[CH2 = CHBF3]

Vinyltrifluoroborate

[C1F3-BF3]

Trifluoromethyltrifluoroborate

[C2F5-BF3]

Pentafluoroethyltrifluoroborate

[C3F7-BF3]

Heptafluoropropyltrifluoroborate

[C4F9-BF3]

Nonafluorobutyltrifluoroborate

[CF2 = CFBF3]

Trifluorovinyltrifluoroborate

[C(CN)3]

Tricyanomethanide

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hu, Y., Peng, X. (2014). Effect of the Structures of Ionic Liquids on Their Physical Chemical Properties. In: Zhang, S., Wang, J., Lu, X., Zhou, Q. (eds) Structures and Interactions of Ionic Liquids. Structure and Bonding, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38619-0_5

Download citation

Publish with us

Policies and ethics