Skip to main content

Research Development on Vanadium-Dependent Haloperoxidases in Marine Algae

  • Conference paper
  • First Online:
Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 251))

Abstract

The halogenated marine natural products encompass a very wide range of compounds which often have important biological activities or pharmacological properties. The haloperoxidases are thought to be involved in the biosynthesis of these natural products. A new kind of haloperoxidases that contain vanadium in the active site capable of catalyzing halogenation reactions of several substrates have been subsequently isolated from a variety of organisms, particularly in marine algae. Due to their highly chemical and thermal stability, the vanadium-dependent haloperoxidases (vHPOs) attracted more attention in the last few years. The paper mainly contemplates on the types, biological properties, and molecular structures of marine algae vHPOs as well as their biochemical function and potential industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler A, Walker JV (1993) Marine haloperoxidases. Chem Rev 93:1937–1944

    Article  CAS  Google Scholar 

  2. Kupper FC, Carpenter LJ, McFiggans GB et al (2008) Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Sci U S A 105(19):6954–6958

    Article  CAS  Google Scholar 

  3. John Faulkner D (2000) Marine natural products. Nat Prod Rep 17(1):7–55

    Article  Google Scholar 

  4. Manley SL, Goodwin K, North WJ (1992) Laboratory production of bromoform, methylene bromide, and methyl iodide by macroalgae and distribution in nearshore southern California waters. Limnol Oceanogr 37(8):1652–1659

    Article  CAS  Google Scholar 

  5. Gschwend PM, Macfarlane JK, Newman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine Macroalgae. Science 227(4690):1033–1035

    Article  CAS  Google Scholar 

  6. Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52(2):289–297

    Article  CAS  Google Scholar 

  7. Butler A, Carter-Franklin JN (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Pro Rep 21(1):180–188

    Article  CAS  Google Scholar 

  8. Atkins WRG (1914) Oxydases and their inhibitors in plant tissues. Part iii: The localisation of oxydases and catalase in some marine algae. Sci Proc Ro Dublin Soc 14:199–206

    Google Scholar 

  9. Reed GB (1915) Evidence for the general distribution of oxidases in plants. Bot Gaz 59(5):407–409

    Article  CAS  Google Scholar 

  10. Kylin H (1930) über das vorkommen von jodiden, bromiden und jodidoxydasen bei den meeresalgen. Hoppe-Seyler’s Z Physiol Chem 186(1–2):50

    Article  Google Scholar 

  11. Wolinsky LE, Faulkner DJ (1976) Biomimetic approach to the synthesis of laurencia metabolites. Synthesis of 10-bromo-Alpha-chamigrene. J Org Chem 41(4):597–600

    Article  CAS  Google Scholar 

  12. Fenical W (1975) Halogenation in the rhodophyta-a review. J Phycol 11(3):245–259

    CAS  Google Scholar 

  13. Vilter H (1983) Peroxidases from phaeophyceae iv. Fractionation and location of peroxidase isoenzymes in Ascophyllum nodosum (L.). Bot Mar 26(10):451–455

    Google Scholar 

  14. Wever R, Plat H, de Boer E (1985) Isolation procedure and some properties of the bromoperoxidase from the seaweed Ascophyllum nodosum. Biochim Biophys Acta Prot Struct Mol Enzym 830(2):181–186

    Article  CAS  Google Scholar 

  15. Almeida M, Filipe S, Humanes M et al (2001) Vanadium haloperoxidases from brown algae of the laminariaceae family. Phytochemistry 57(5):633–642

    Article  CAS  Google Scholar 

  16. Manthey JA, Hager LP (1989) Characterization of the catalytic properties of bromoperoxidase. Biochemistry 28(7):3052–3057

    Article  CAS  Google Scholar 

  17. Manthey JA, Hager LP (1985) Characterization of the oxidized states of bromoperoxidase. J Biol Chem 260(17):9654–9659

    CAS  Google Scholar 

  18. Roach MP, Chen YP, Woodin SA et al (1997) Notomastus lobatus chloroperoxidase and amphitrite ornata dehaloperoxidase both contain histidine as their proximal heme iron ligand. Biochemistry 36(8):2197–2202

    Article  CAS  Google Scholar 

  19. Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem 284(28):18577–18581

    Article  CAS  Google Scholar 

  20. de Boer E, Plat H, Tromp MG et al (1987) Vanadium containing bromoperoxidase: An example of an oxidoreductase with high operational stability in aqueous and organic media. Biotechnol Bioeng 30(5):607–610

    Article  Google Scholar 

  21. Coupe EE, Smyth MG, Fosberry AP et al (2007) The dodecameric vanadium-dependent haloperoxidase from the marine algae Corallina officinalis: Cloning, expression, and refolding of the recombinant enzyme. Prot Exp Pur 52(2):265–272

    Article  CAS  Google Scholar 

  22. Itoh N, Hasan AK, Izumi Y, Yamada H (1988) Substrate specificity, regiospecificity and stereospecificity of halogenation reactions catalyzed by non-heme-type bromoperoxidase of Corallina pilulifera. Eur J Biochem 172(2):477–484

    Article  CAS  Google Scholar 

  23. Andersson M, Willetts A, Allenmark S (1997) Asymmetric sulfoxidation catalyzed by a vanadium-containing bromoperoxidase. J Org Chem 62(24):8455–8458

    Article  CAS  Google Scholar 

  24. ten Brink HB, Dekker HL, Schoemaker HE, Wever R (2000) Oxidation reactions catalyzed by vanadium chloroperoxidase from Curvularia inaequalis. J Inorg Biochem 80(1–2):91–98

    Article  Google Scholar 

  25. Leblanc C, Colin C, Cosse A et al (2006) Iodine transfers in the coastal marine environment: The key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie 88(11):1773–1785

    Article  CAS  Google Scholar 

  26. Vilter H (1984) Peroxidases from phaeophyceae: A vanadium(v)-dependent peroxidase from Ascophyllum nodosum. Phytochemistry 23(7):1387–1390

    Article  CAS  Google Scholar 

  27. Krenn BE, Tromp MG, Wever R (1989) The brown alga Ascophyllum nodosum contains two different vanadium bromoperoxidases. J Biol Chem 264(32):19287–19292

    CAS  Google Scholar 

  28. Almeida M, Humanes M, Melo R et al (1998) Saccorhiza polyschides (Phaeophyceae; phyllariaceae) a new source for vanadium-dependent haloperoxidases. Phytochemistry 48(2):229–239

    Article  CAS  Google Scholar 

  29. Almeida MG, Humanes M, Melo R et al (2000) Purification and characterisation of vanadium haloperoxidases from the brown alga Pelvetia canaliculata. Phytochemistry 54(1):5–11

    Article  CAS  Google Scholar 

  30. de Boer E, Tromp MGM, Plat H et al (1986) Vanadium (v) as an essential element for haloperoxidase activity in marine brown algae: Purification and characterization of a vanadium (v)-containing bromoperoxidase from Laminaria saccharina. Biochim Biophys Acta Prot Struct Mol Enzym 872(1–2):104–115

    Article  Google Scholar 

  31. Isupov MN, Dalby AR, Brindley AA et al (2000) Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis. J Mol Biol 299(4):1035–1049

    Article  CAS  Google Scholar 

  32. Verdel EF, Kline PC, Wani S, Woods AE (2000) Purification and partial characterization of haloperoxidase from fresh water algae Cladophora glomerata. Comp Biochem Physiol B: Biochem Mol Biol 125(2):179–187

    Article  CAS  Google Scholar 

  33. Plat H, Krenn BE, Wever R (1987) The bromoperoxidase from the lichen Xanthoria parietina is a novel vanadium enzyme. Biochem J 248(1):277–279

    CAS  Google Scholar 

  34. van Schijndel JWPM, Vollenbroek EGM, Wever R (1993) The chloroperoxidase from the fungus Curvularia inaequalis; a novel vanadium enzyme. Biochim Biophys Acta Prot Struct Mol Enzym 1161(2–3):249–256

    Article  Google Scholar 

  35. Barnett P, Hemrika W, Dekker HL et al (1998) Isolation, characterization, and primary structure of the vanadium chloroperoxidase from the fungus Embellisia didymospora. J Biol Chem 273(36):23381–23387

    Article  CAS  Google Scholar 

  36. Soedjak HS, Walker JV, Butler A (1995) Inhibition and inactivation of vanadium bromoperoxidase by the substrate hydrogen peroxide and further mechanistic studies. Biochemistry 34(39):12689–12696

    Article  CAS  Google Scholar 

  37. Everett RR, Butler A (1989) Bromide-assisted hydrogen peroxide disproportionation catalyzed by vanadium bromoperoxidase: Absence of direct catalase activity and implications for the catalytic mechanism. Inorg Chem 28(3):393–395

    Article  CAS  Google Scholar 

  38. Everett RR, Soedjak HS, Butler A (1990) Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase. Steady state kinetic analysis and comparison to the mechanism of bromination. J Biol Chem 265(26):15671–15679

    CAS  Google Scholar 

  39. Andersson M, Willetts A, Allenmark S (1997) Asymmetric sulfoxidation catalyzed by a vanadium-containing bromoperoxidase. J Org Chem 62(24):8455–8458

    Article  CAS  Google Scholar 

  40. ten Brink HB, Schoemaker HE, Wever R (2001) Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum. Evidence for direct oxygen transfer catalysis. Eur J Biochem 268(1):132–138

    Article  Google Scholar 

  41. Messerschmidt A, Wever R (1996) X-ray structure of a vanadium-containing enzyme: Chloroperoxidase from the fungus Curvularia inaequalis. Proc Natl Acad Sci 93(1):392–396

    Article  CAS  Google Scholar 

  42. Macedo-Ribeiro S, Hemrika W, Renirie R et al (1999) X-ray crystal structures of active site mutants of the vanadium-containing chloroperoxidase from the fungus Curvularia inaequalis. J Biol Inorg Chem 4(2):209–219

    Article  CAS  Google Scholar 

  43. Messerschmidt A, Prade L, Wever R (1997) Implications for the catalytic mechanism of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by x-ray structures of the native and peroxide form. Biol Chem 378(3–4):309–315

    CAS  Google Scholar 

  44. Weyand M, Hecht HJ, Kieß M et al (1999) X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 resolution. Biol J Mol Biol 293(3):595–611

    Article  CAS  Google Scholar 

  45. Pooransingh-Margolis N, Renirie R, Hasan Z et al (2006) 51v solid-state magic angle spinning NMR spectroscopy of vanadium chloroperoxidase. J Am Chem Soc 128(15):5190–5208

    Article  CAS  Google Scholar 

  46. Zhang Y, Gascón JA (2008) QM/MM investigation of structure and spectroscopic properties of a vanadium-containing peroxidase. J Inorg Biochem 102(8):1684–1690

    Article  CAS  Google Scholar 

  47. Raugei S, Carloni P (2005) Structure and function of vanadium haloperoxidases. J Phys Chem B 110(8):3747–3758

    Article  Google Scholar 

  48. Vilter H (1995) Vanadium-dependent haloperoxidases. Met Ions Biol Syst 31:325–362

    CAS  Google Scholar 

  49. Butler A, Carter JN, Simpson MT (2001) Vanadium in proteins and enzymes. In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins. Marcel Dekker Inc., New York

    Google Scholar 

  50. Littlechild J (1999) Haloperoxidases and their role in biotransformation reactions. Curr Opin Chem Biol 3(1):28–34

    Article  CAS  Google Scholar 

  51. Carter-Franklin JN, Butler A (2004) Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J Am Chem Soc 126(46):15060–15066

    Article  CAS  Google Scholar 

  52. Rehder D (1991) The bioinorganic chemistry of vanadium. Angew Chem Int Ed 30(2):148–167

    Article  Google Scholar 

  53. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104(2):849–902

    Article  CAS  Google Scholar 

  54. Jiang B, Huang H, Luo J, Li Z-Y (2005) Chiral sulfoxides by biooxidation of sulfides. Chin J Org Chem 25(12):1542–1547 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a program of Key Laboratory of Industrial Fermentation Microbiology (No.2012IM003), Tianjin University of Science & Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, T., Lu, Yc., Cao, Dm., Gao, Sb., Zhang, Ys. (2014). Research Development on Vanadium-Dependent Haloperoxidases in Marine Algae. In: Zhang, TC., Ouyang, P., Kaplan, S., Skarnes, B. (eds) Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering, vol 251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37925-3_187

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37925-3_187

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37924-6

  • Online ISBN: 978-3-642-37925-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics