Skip to main content

Abstract

Increasing energy demand, rising import dependency and the European move towards alternative energy sources have a large influence on future energy transport systems. Volatile renewable energy sources are difficult to predict and should be able to provide for the consumer demand anytime. The latter needs the security of a large supply and availability which - combined with a fluctuating production - requires short, medium and long term storage concepts. These requirements cannot be fulfilled by the existing systems in sufficient quantities due to scarce capacities and limited flexibility, but the convergence of electricity and gas supply systems can provide the solution. Electrochemical technologies modeled as energy storages are currently in the middle of intensive political and technical discussions and under new research focus. Hydrogen as a chemical energy carrier is treated as a flagship project for the utilization of unused renewable energy production capacities. As a best option it is capable of fulfilling the requirements and can play an important role in future energy systems. This paper illustrates different aspects and consequences of hydrogen in large gas pipeline systems. Factors influencing the existing technical equipment indicate advantages and challenges for a conservative changeover to a regenerative energy supply infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sterner, M., Jentsch, M., Holzhammer, U.: Energiewirtschaftliche und ökologische Bewertung eines Windgas-Angebotes, Kassel, Germany (2011)

    Google Scholar 

  2. DVGW, DVGW-Arbeitsblatt G 262: Nutzung von Gasen aus regenerativen Quellen in der öffentlichen Gasversorgung, Bonn, Germany (2010)

    Google Scholar 

  3. EnWG – Energiewirtschaftsgesetz, Gesetz über die Elektrizitäts- und Gasversorgung (2011)

    Google Scholar 

  4. GasNZV – Gasnetzzugangsverordnung, Verordnung über den Zugang zu Gasversorgungsnetzen (2010)

    Google Scholar 

  5. EEG - Erneuerbares-Energien-Gesetz (2012)

    Google Scholar 

  6. Li, B., Müller-Kirchenbauer, J.: Overall simulation of German and European natural gas transmission systems. In: Hou, M.Z., Xie, H., Yoon, J.S. (eds.) Underground Storage of CO2 and Energy, pp. 305–310. CRC Press, Boca Raton (2010)

    Chapter  Google Scholar 

  7. Li, B.: Simulation and capacity calculation in real German and European interconnected gas transport systems. Dissertation Technical University of Clausthal, Germany (2012)

    Google Scholar 

  8. NEP Gas, Netzentwicklungsplan Gas – Entwurf der deutschen Fernleitungsnetzbetreiber, Berlin, Germany (2012)

    Google Scholar 

  9. Tabkhi, F., Azzaro-Pantel, C., Pibouleau, L., Domenech, S.: A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection, Toulouse, France (2008)

    Google Scholar 

  10. DVGW, DVGW-Arbeitsblatt G 486: Realgasfaktoren und Kompressibilitätszahlen von Erdgasen, Eschborn, Germany (1992)

    Google Scholar 

  11. Tzimas, E., Filiou, C., Peteves, S.D., Veyret, J.B.: Hydrogen Storage: State-of-the-Art and Future Perspective. Institute for Energy, Petten, The Netherlands (2003)

    Google Scholar 

  12. Wenske, M.: Stand Elektrolyse und zukünftige Entwicklung. Presentation of ENERTAG AG, Gut Dauderthal, Germany (2010)

    Google Scholar 

  13. Hüttenrauch, J., Müller-Syring, G.: Zumischung von Wasserstoff zum Erdgas. DVGW energie|wasser-praxis 10, Bonn, Germany (2010)

    Google Scholar 

  14. Schouten, J., Michels, J., Janssen-van Rosmalen, R.: Effect of H2-injection on the thermodynamic and transportation properties of natural gas. International Journal of Hydrogen Energy 29(1), 1173–1180 (2004)

    Google Scholar 

  15. DVGW, DVGW-Arbeitsblatt G 260: Gasbeschaffenheit, Bonn, Germany (2008)

    Google Scholar 

  16. Jordan, T.: Hysafe Chapter 3: Material Consideration when working with Hydrogen (2007)

    Google Scholar 

  17. Castello, P., Tzimas, E., Moretto, P., Peteves, S.: Techno-economic assessment of hydrogen transmission & distribution systems in Europe in the medium and long term. Report EUR 21586, Petten, The Netherlands (2005)

    Google Scholar 

  18. DIN EN 10208-2, Stahlrohre für Rohrleitungen für brennbare Medien - Technische Lieferbedingungen – Teil 2: Rohre der Anforderungsklasse B (2009)

    Google Scholar 

  19. Hardie, D., Charles, E., Lopez, A.: Hydrogen embrittlement of high strength pipeline steels. Corrosion Science 48(12), 4378–4385 (2006)

    Article  Google Scholar 

  20. Capelle, J., Gilgert, J., Pluvinage, G.: Hydrogen Effect on Fatigue and Fracture of Pipe Steels. Ecole Nationale d’Ingénieurs de Metz, Metz, France (2009)

    Google Scholar 

  21. Alliat, I.: To what extent can existing pipelines accommodate hydrogen? - Presentation of NATURALHY project results, Groningen, Netherlands (2009)

    Google Scholar 

  22. Liwacom Informationstechnik GmbH & SIMONE Research Group, SIMONE SOFTWARE – Gleichungen und Methoden, Essen, Germany (2004)

    Google Scholar 

  23. Wang, J., Huang, Z., Tang, C., Miao, H., Wang, X.: Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. State Key Laboratory of Multiphase Flow on Power Engineering, Xi’an Jiatong University, Xi’an, China (2008)

    Google Scholar 

  24. Hu, E., Huang, Z., He, J., Jin, C., Zheng, J.: Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames. International Journal of Hydrogen Energy, State Key Laboratory of Multiphase Flow on Power Engineering (2009)

    Google Scholar 

  25. Jassin, F.: Flammenrückschlag durch verbrennungsinduziertes Wirbelaufplatzen. Dissertation Technical University of Munich, Germany (2003)

    Google Scholar 

  26. Foh, S., Novil, M., Rockar, E., Randolph, P.: Underground Hydrogen Storage Final Report. Institute of Gas Technology, Chicago, USA (1979)

    Google Scholar 

  27. Pöppl, H.: Flexibler Prozess-Gaschromatograph für die neuen Anforderungen an Gasanalysegeräte. gwf-Gas|Erdgas, Oldenburg Energieverlag, Munich, Germany (2011)

    Google Scholar 

  28. DIN 51624, Kraftstoffe für Fahrzeuge – Erdgas – Anforderungen und Prüfverfahren. Beuth Verlag GmbH, Berlin, Germany (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

von der Grün, G.T.M., Hotopp, S., Müller-Kirchenbauer, J. (2013). Transport and Usage of Hydrogen via Natural Gas Pipeline Systems. In: Hou, M., Xie, H., Were, P. (eds) Clean Energy Systems in the Subsurface: Production, Storage and Conversion. Springer Series in Geomechanics and Geoengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37849-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37849-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37848-5

  • Online ISBN: 978-3-642-37849-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics