Skip to main content

Nanostructured Thermoelectric Materials

  • Chapter
  • First Online:
Thermoelectric Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

Abstract

Thermoelectric energy conversion technique has been used as the power supply for the deep-space exploring missions, now showing notable advantages to harvest the widely distributed waste heat and convert the abundant solar energy into electricity. Recent years have witnessed big advances in the nanostructure thermoelectric bulk materials in both synthesis technique and fundamental understanding. In this book chapter, various strategies towards novel nanostructured bulk material with improved ZT value were summarized according to different synthesis routes, including reduced grain size by physical, or chemical powder metallurgy method, surface or interface modification by introduce second phase, and forming precipitations by molten casting method. We also theoretically explained the importance of the interface/boundary scattering to phonon and electron within the various thermoelectric materials. We finally proposed a new nanocomposite with ordered nanostructure, named as “ordered nanocomposite”, which is expected to achieve new breakthrough if we could create some sort of channels for the easy transport of electrons but difficult for the phonons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Schulz, A.D. Kelkar, M.J. Sundaresan, Nanoengineering of Structure, Functional and Smart Materials (CRC Press and Taylor & Francis Group, Boca Raton, USA, 2006)

    Google Scholar 

  2. S. Logothetidis, Nanostructured Materials and their Applications (Springer, Heidelberg, Germany, 2012)

    Book  Google Scholar 

  3. R.D. Abelson, Space mission and applications, in CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC Press, Boca Raton, USA, 2006)

    Google Scholar 

  4. J. LaGrandeur, D. Crane, S. Hung, et al., Automotive waste heat conversion to electric power using skutterudite, TAGS, PbTe, BiTe. in Proceedings of the 25th International Conference on Thermoelectric, Vienna, Austria, pp. 343–348 (2006)

    Google Scholar 

  5. D. Kraemer, B. Poudel, H.P. Feng et al., High performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011)

    Article  Google Scholar 

  6. L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993)

    Article  Google Scholar 

  7. T.C. Harman, D.L. Spears, M.J. Manfra, High thermoelectric figure of merit in PbTe quantum wells. J. Electron. Mater. 25, 1121–1127 (1996)

    Article  Google Scholar 

  8. H. Beyer, J. Nurnus, H. Böttner, A. Lambrecht, PbTe based supper-lattice structure with high thermoelectric efficiency. Appl. Phys. Lett. 80, 1216–1218 (2002)

    Article  Google Scholar 

  9. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figureof merit. Nature 413, 598–602 (2001)

    Article  Google Scholar 

  10. D.G. Cahill, W.K. Ford, K.E. Goodson et al., Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)

    Article  Google Scholar 

  11. J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solid (Oxford University Press, Oxford, UK, 2001)

    Book  Google Scholar 

  12. R.W. Keyes, High-temperature thermal conductivity of insulating crystals: relationship to the melting point. Phys. Rev. 115, 564–567 (1959)

    Article  Google Scholar 

  13. J. Callaway, H.C. von Baeyer, Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 120, 1149–1154 (1960)

    Article  Google Scholar 

  14. J. Yang, D.T. Morelli, G.P. Meisner et al., Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled Skutterudites. Phys. Rev. 67, 165207–6 (1996)

    Article  Google Scholar 

  15. J.Q. He, J.R. Sootsman, S.N. Girard et al., On the orignin of increased Phonon scattering in nanostructured PbTe based thermoelectric materials. J. Am. Chem. Soc. 132, 8669–8675 (2010)

    Article  Google Scholar 

  16. K. Esfarjani, H.T. Stokes, Method to extract anharmonic force constants from first principles calculations. Phys. Rev. B 77, 144112–7 (2008)

    Article  Google Scholar 

  17. M. Zebarjadi, K. ESfarjani, M.S. Dresselhaus et al., Perspective on thermoelectrics: from fundamentals to devices applications’. Energy Environ. Sci. 5, 5147–5162 (2012)

    Article  Google Scholar 

  18. Y.K. Koh, D.G. Gahill, Frequency dependency of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207–5 (2007)

    Article  Google Scholar 

  19. A.J. Minnich, J.A. Johanson, A.J. Schmidt et al., Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901–4 (2011)

    Article  Google Scholar 

  20. C.W. Nan, R. Birringer, Determining the Kapitza resistance and the thermal conductivity of polycrystals: a simple model. Phys. Rev. B 57, 8264–8268 (1998)

    Article  Google Scholar 

  21. H.R. Meddins, J.E. Parrott, The thermal and thermoelectric properties of sintered germanium-silicon alloys. J. Phys. C : Solid State Phys. 9, 1263–1276 (1976)

    Article  Google Scholar 

  22. D.M. Rowe, V.S. Shukla, The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy. J. Appl. Phys. 52, 7421–7427 (1981)

    Article  Google Scholar 

  23. K. Pixius, J. Schilz, Low-temperature electronic transport behavior of powder-metallurgical SiGe alloys. Appl. Phys. A: Mater. Sci. Proc. 57, 517–520 (1993)

    Article  Google Scholar 

  24. H. Nagai, Effects of mechanical alloying and grinding on the preparation and thermoelectric properties of beta-FeSi\(_{2}\). Mater. Trans. JIM 36, 365–372 (1995)

    Google Scholar 

  25. T.S. Oh, J.S. Choi, D.B. Hyun, Formation of PbTe intermetallic compound by mechanical alloying of elemental Pb and Te powders. Scripta Metallurgica et Materialia 32, 595–600 (1995)

    Article  Google Scholar 

  26. H.J. Kim, H.C. Kim, D.B. Hyun, T.S. Oh, Thermoelectric properties of p-type (Bi, Sb)\(_{2}\)Te\(_{3 }\)alloys fabricated by the hot pressing method. Met. Mater. Inter. 4, 75–81 (1998)

    Google Scholar 

  27. W.S. Liu, B.P. Zhang, J.F. Li, J. Liu, Thermodynamic explanation of solid-state reaction in synthesis process of CoSb\(_{3}\) via mechanical alloying. Acta Phys. Sinca 55, 465–461 (2006)

    Google Scholar 

  28. W. Wunderlich, K. Pixius, J. Schilz, Microstructure of mechanical alloyed Si\(_{76}\)Ge\(_{23.95}\)P\(_{0.05}\). Nanostructured Mater. 6, 441–444 (1995)

    Article  Google Scholar 

  29. M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. A 287, 183–188 (2000)

    Article  Google Scholar 

  30. K. Inoue, US Patent, No. 3 241 956 (1966)

    Google Scholar 

  31. K. Inoue, US Patent, No. 3 250 892 (1966)

    Google Scholar 

  32. Y.C. Lan, A.J. Minnich, G. Chen, Z.F. Ren, Enhancement of thermoelectric figure of merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357–376 (2010)

    Article  Google Scholar 

  33. X.W. Wang, H. Lee, Y.C. Lan et al., Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 193121–3 (2008)

    Article  Google Scholar 

  34. G. Joshi, H. Lee, Y.C. Lan et al., Enhanced thermoelectric figure-of-merit in nanostructured p-type Silicon germanium bulk Alloys. Nano Lett. 8, 4670–4674 (2008)

    Article  Google Scholar 

  35. C.B. Vining, W. Laskow, J.O. Hanson et al., Thermoelectric properties of pressure-sintered Si\(_{0.8}\)Ge\(_{0.2 }\)thermoelectric alloys. J. Appl. Phys. 69, 4333–8 (1991)

    Article  Google Scholar 

  36. M.M. Zou, J.F. Li, B. Du et al., Fabrication and Thermoelectric properties of fine-grained TiNiSn compounds. J. Solid State Chem. 182, 3138–3142 (2009)

    Article  Google Scholar 

  37. X. Yan, G. Joshi, W.S. Liu et al., Enhanced thermoelectric figure of merit of p-type half-Heuslers. Nano Lett. 11, 556–560 (2011)

    Article  Google Scholar 

  38. G. Joshi, X. Yan, H.Z. Wang et al., Enhancement in thermoelectric figure-of-merit of an N-type half-Heusler compound by the nanocomposite approach. Adv. Energy Mater. 1, 643–647 (2011)

    Google Scholar 

  39. B. Poudel, Q. Hao, Y. Ma et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)

    Article  Google Scholar 

  40. Y. Ma, Q. Hao, B. Poudel et al., Enhanced thermoelectric figure-of-merit in p-type nano structure bismuth antimony tellurium alloys made from element chunks. Nano Lett. 8, 2580–2584 (2008)

    Article  Google Scholar 

  41. W.S. Liu, B.P. Zhang, J.F. Li et al., Enhanced thermoelectric properties in CoSb\(_{3-x}\)Te\(_{x}\) alloys prepared by mechanical alloying and spark plasma sintering. J. Appl. Phys. 102, 103717–7 (2007)

    Article  Google Scholar 

  42. M. Umemoto, S. Shiga, K. Raviprasad, I. Okane, Mechanical alloying of thermoelectric FeSi\(_{2}\) compound. Mater. Sci. Forum 179–181, 165–170 (1995)

    Article  Google Scholar 

  43. D.B. Hyun, J.S. Hwang, J.D. Shim, T.S. Oh, Thermoelectric properties of (Bi\(_{0.25}\)Sb\(_{0.75})\) \(_{2}\)Te\(_{3}\) alloys fabricated by hot-pressing method. J. Mater. Sci. 36, 1285–1291 (2001)

    Article  Google Scholar 

  44. H.Z. Wang, Q.Y. Zhang, B. Yu et al., Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys. J. Mater. Res. 26, 912–916 (2011)

    Article  Google Scholar 

  45. X. Yan, W.S. Liu, H. Wang, et al., Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heusler Hf\(_{1-{\rm x}}\)Ti\(_{\rm x}\)CoSb\(_{0.8}\)Sn\(_{0.2}\). Energy Environ. Sci. 5, 7543–7548 (2012)

    Google Scholar 

  46. Y.C. Lan, B. Poudel, Y. Ma et al., Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett. 9, 1419–1422 (2009)

    Article  Google Scholar 

  47. D.B. Wang, D.B. Yu, M.S. Mo et al., Preparation and characterization of wire-like Sb\(_{2}\)Se\(_{3}\) and flake-like Bi\(_{2}\)Se\(_{3}\) nano crystals. J. Cryst. Growth 253, 445–451 (2003)

    Article  Google Scholar 

  48. Y. Deng, X.S. Zhou, G.D. Wei et al., Solvothermal preparation and characterization of nanocrystalline Bi\(_{2}\)Te\(_{3}\) powders with different morphology. J. Phys. Chem. Solid 63, 2119–2121 (2002)

    Article  Google Scholar 

  49. W.Z. Wang, B. Poudel, J. Yang et al., High-yield synthesis of single-crystalline antimony telluride nano plate using a solvothermal approach. J. Am. Chem. Soc. 127, 13792–13793 (2005)

    Article  Google Scholar 

  50. X.B. Zhao, T. Sun, T.J. Zhu, J.P. Tu, In-situ investigation and effect of additives on low temperature aqueous chemical synthesis of Bi\(_{2}\)Te\(_{3}\) nanocapsules. J. Chem. Mater. 15, 1621–1625 (2005)

    Article  Google Scholar 

  51. H. Yu, P.C. Gibbons, W.E. Buhro, Bismuth, telluride, and bismuth telluride nanowires. J. Mater. Chem. 14, 595–602 (2004)

    Article  Google Scholar 

  52. J.J. Urban, D.V. Talapin, E.V. Shevchenko, C.B. Murray, Self-assembly of PbTe Quantum dots into nano crystal supper lattice and Glass Film. J. Am. Chem. Soc. 128, 3248–3255 (2006)

    Article  Google Scholar 

  53. W.Z. Wang, B. Poudel, D.Z. Wang, Z.F. Ren, Synthesis of PbTe nanoboxes using a solvothermal technique. Adv. Mater. 17, 2110–2114 (2005)

    Article  Google Scholar 

  54. G.A. Tai, B. Zhou, W.L. Guo, Structure characterization and thermoelectric transport properties of uniform single crystalline Lead telluride nanowire. J. Phys. Chem. C 112, 11314–11318 (2008)

    Article  Google Scholar 

  55. M.S. Toprak, C. Stiewe, D. Platzek et al., The impact of nanostructure on the thermal conductivity of thermoelectric CoSb\(_{3}\). Adv. Fucnt. Mater. 14, 1189–1196 (2004)

    Article  Google Scholar 

  56. J.P.A. Makongo, D.K. Misra, X.Y. Zhou et al., Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. J. Am. Chem. Soc. 133, 18843–18852 (2011)

    Article  Google Scholar 

  57. F.J. Fan, B. Yu, Y.X. Wang et al., Colloidal synthesis of Cu\(_{2}\)CdSnSe\(_{4}\) nanocrystals and hot pressing to enhance the thermoelectric figure-of-merit. J. Am. Chem. Soc. 133, 15910–15913 (2011)

    Article  Google Scholar 

  58. W.S. Liu, B.P. Zhang, J.F. Li, L.D. Zhao, Thermoelectric properties of fine-grained CoSb\(_{3}\) skutterudite compound fabricated by mechanical alloying and spark plasma sintering. J. Phys. D: Appl. Phys. 40, 566–572 (2007)

    Article  Google Scholar 

  59. R.J. Mehta, Y.L. Zhang, C. Karthik et al., A new class of doped nano bulk high-figure-of-merit thermoelectric by scalable bottom-up assembly. Nat. Mater. 11, 233–240 (2012)

    Article  Google Scholar 

  60. N. Gothard, J.E. Spowart, T.M. Tritt, Thermal conductivity reduction in fullerene-enriched p-type bismuth telluride composites. Phys. Status Solidi A 207, 157–162 (2007)

    Article  Google Scholar 

  61. J.M. Schultz, J.P. McHugh, W.A. Tiller, Effects of heavy deformation and annealing on electrical properties of Bi\(_{2}\)Te\(_{3}\). J. Appl. Phys. 33, 2443–2450 (1962)

    Article  Google Scholar 

  62. T.S. Oh, D.B. Hyun, N.V. Kolomoets, Thermoelectric properties of the hot-pressed (Bi, Sb)\(_{2}\)(Te, Se)\(_{3}\) alloys. Scripta Mater. 42, 849–854 (2000)

    Google Scholar 

  63. M. Scheele, N. Oeschler, I. Veremechuk et al., ZT enhancement in solution-grown Sb\(_{2-x}\)Bi\(_{x}\)Te\(_{3}\) nanoplatelets. ACS Nano 4, 4283–4291 (2010)

    Article  Google Scholar 

  64. H. Li, K.F. Cai, H.F. Wang et al., The influence of co-doping Ag and Sb on microstructure and thermoelectric properties of PbTe prepared by combining hydrothermal synthesis and melting. J. Solid State Chem. 182, 869–874 (2009)

    Article  Google Scholar 

  65. H. Wang, J.F. Li, C.W. Nan et al., High performance Ag\(_{0.8}\)Pb\(_{18+x}\)SbTe\(_{20}\) thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl. Phys. Lett. 88, 092104–03 (2006)

    Article  Google Scholar 

  66. J.L. Mi, X.B. Zhao, T.J. Zhu, J.P. Tu, Thermoelectric properties of n-type CoSb\(_{3}\) nanocomposite prepared by the in situ solvothermal synthesis and hot pressing. J. Inorgan. Mater. 23, 715–718 (2008)

    Article  Google Scholar 

  67. R.M. Costescu, D.G. Cahill, F.H. Fabreguette et al., Ultra-low thermal conductivity in W/Al\(_{2}\)O\(_{3}\) nanolaminates. Science 303, 989–990 (2004)

    Article  Google Scholar 

  68. M. Ito, T. Tada, S. Katsuyama, Thermoelectric properties of Fe\(_{0.98}\)Co\(_{0.02}\)Si\(_{2}\) with ZrO\(_{2}\) and rare-earth oxide dispersion by mechanical alloying. J. Alloys Compounds 350, 296–302 (2003)

    Article  Google Scholar 

  69. M. Ito, T. Tanaka, S. Hara, Thermoelectric properties of \(\beta \)-FeSi\(_{2}\) with electrically insulating SiO\(_{2}\) and conductive TiO dispersion by mechanical alloying. J. Appl. Phys. 11, 6209–6215 (2004)

    Article  Google Scholar 

  70. X.Y. Huang, Z. Xu, L.D. Chen, Thermoelectric performance of ZrNiSn/ZrO\(_{2}\) composite. Solid State Commun. 130, 181–185 (2004)

    Article  Google Scholar 

  71. Z.M. He, C. Stiewe, D. Platzek et al., Nano ZrO\(_{2}\)/CoSb\(_{3}\) composites with improved thermoelectric figure of merit. Nanotechnology 18, 235602–5 (2007)

    Article  Google Scholar 

  72. L. D. Zhao, B. P. Zhang, L. J. Li, M. et al., Thermoelectric and mechanical properties of nano-SiC-dispersed Bi\(_{2}\)Te\(_{3}\) fabricated by mechanical alloying and spark plasma sintering. J. Alloy. Compd. 455, 259–264 (2008)

    Google Scholar 

  73. X.Y. Zhao, X. Shi, L.D. Chen et al., Synthesis of Yb\(_{y}\)Co\(_{4}\)Sb\(_{12}\)/Yb\(_{2}\)O\(_{3}\) composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092121–3 (2006)

    Article  Google Scholar 

  74. H. Li, X.F. Tang, X.L. Su, Q.J. Zhang, Preparation and thermoelectric properties of high-performance Sb additional Yb\(_{0.2}\)Co\(_{4}\)Sb\(_{12+y }\)bulk materials with nano structure. Appl. Phys. Lett. 92, 202114–03 (2008)

    Google Scholar 

  75. J.F. Li, W.S. Liu, B.P. Zhang, L.D. Zhao, China Patent No. 200810119809 (2008)

    Google Scholar 

  76. X.H. Ji, J. He, Z. Su et al., Improved thermoelectric performance in polycrystalline p-type Bi\(_{2}\)Te\(_{3}\) via alkali metal salt hydrothermal nanocoating treatment approach. J. Appl. Phys. 104, 034907–06 (2008)

    Article  Google Scholar 

  77. D.K. Ko, Y.J. Kang, C.B. Murray, Enhanced thermopower via carrier energy filtering in solution processable Pt-Sb\(_{2}\)Te\(_{3}\) nanocomposites. Nano Lett. 11, 2841–2844 (2011)

    Article  Google Scholar 

  78. H. Li, X.F. Tang, Q.J. Zhang, C. Uher, High performance In\(_{x}\)Ce\(_{y}\)Co\(_{4}\)Sb\(_{12}\) thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114–03 (2009)

    Article  Google Scholar 

  79. Z. Xiong, X.H. Chen, X.Y. Huang et al., High thermoelectric performance of Yb\(_{0.26}\) Co\(_{4}\)Sb\(_{12}\)/yGaSb nanocomposite originating from scattering electrons of low energy. Acta Mater. 58, 3995–4002 (2010)

    Google Scholar 

  80. D.W. Liu, J.F. Li, C. Chen, B.P. Zhang, Effect of SiC nanodispersion on the thermoelectric properties of p-type and n-type Bi\(_{2}\)Te\(_{3}\)-based alloys. J. Electron. Mater. 40, 992–998 (2011)

    Article  Google Scholar 

  81. W.S. Liu, X. Yan, G. Chen, Z.F. Ren, Recent advances in thermoelectric nano composites. Nano Energy 1, 42–56 (2012)

    Article  Google Scholar 

  82. J.R. Sootsman, H.J. Kong, C. Uher et al., Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew. Chem. 120, 8746–8750 (2008)

    Article  Google Scholar 

  83. K. Biswas, J.Q. He, Q.C. Zhang et al., Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011)

    Article  Google Scholar 

  84. K.F. Hsu, S. Loo, F. Guo et al., Cubic AgPb\(_{\rm m}\)SbTe\(_{2+{\rm m}}\): bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004)

    Google Scholar 

  85. P.F.P. Poudeu, J. D’Angel, A.D. Downey et al., High thermoelectric figure of merit and nanostructuring in bulk p-type Na\(_{1-{\rm x}}\)Pb\(_{\rm m}\)Sb\(_{\rm y}\)Te\(_{{\rm m}+2}\). Angew. Chem. 118, 3919–3923 (2006)

    Google Scholar 

  86. J. Androulakis, C.H. Lin, H.J. Kong et al., Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb\(_{1-{\rm x}}\)Sn\(_{\rm x}\)Te-PbS. J. Am. Chem. Soc. 129, 9780–9788 (2007)

    Google Scholar 

  87. K. Ahn, M.K. Han, J.Q. He et al., Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. J. Am. Chem. Soc. 132, 5227–5235 (2010)

    Article  Google Scholar 

  88. Y.Z. Pei, J. Lensch-Falk, E.S. Toberer et al., High thermoelectric performance in PbTe due to large nanoscale Ag\(_{2}\)Te precipitates and La doping. Adv. Funct. Mater. 21, 241–249 (2011)

    Article  Google Scholar 

  89. L.D. Zhao, S.H. Lo, J.Q. He et al., High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructure. J. Am. Chem. Soc. 133, 20476–20487 (2011)

    Article  Google Scholar 

  90. Q. Zhang, J. He, T.J. Zhu et al., High figure of merit and natural nanostructure in Mg\(_{2}\)Si\(_{0.4}\)Sn\(_{0.6}\) based thermoelectric materials. Appl. Phys. Lett. 93, 102109 (2008)

    Article  Google Scholar 

  91. X.L. Su, H. Li, G.Y. Wang et al., Structure and transport properties of double-doped CoSb\(_{2.75}\)Ge\(_{0.25-{\rm x}}\)Te\(_{\rm x}\) (x=0.125-0.20) with in situ nanostructure. Chem. Mater. 23, 2948–2955 (2011)

    Google Scholar 

  92. M.K. Han, K. Ahn, H.J. Kim et al., Formation of Cu nanoparticles in layered Bi\(_{2}\)Te\(_{3}\) and their effect on ZT enhancement. J. Mater. Chem. 21, 11365–11370 (2011)

    Article  Google Scholar 

  93. W.S. Liu, B.P. Zhang, L.D. Zhao, J.F. Li, Improvement of thermoelectric performance of CoSb\(_{3-{\rm x}}\)Te\(_{\rm x}\) skutterudite compounds by additional substitution of IV-group elements for Sb. Chem. Mater. 20, 7526–7531 (2008)

    Google Scholar 

  94. M. Zhou, J.F. Li, T. Kita, Nanostructured AgPb\(_{\rm m}\)SbTe\(_{\rm m+2}\) system bulk materials with enhanced thermoelectric performence. J. Am. Chem. Soc. 130, 4527–4532 (2008)

    Google Scholar 

  95. Q.Y. He, S.J. Hu, X.G. Tang et al., The great improvement effect of pores on ZT in Co\(_{1-x}\)Ni\(_{x}\)Sb\(_{3}\) system. Appl. Phys. Lett. 93, 042108–03 (2008)

    Article  Google Scholar 

  96. A. Shakouri, Recent development in semiconductor thermoelectric physics and materials. Ann. Rev. Mater. Res. 41, 399–431 (2011)

    Article  Google Scholar 

  97. P. Pichanusakorn, P. Bandaru, Nanostructured thermoelectrics. Mater. Sci. Eng. R 67, 19–63 (2010)

    Article  Google Scholar 

  98. M. Zebarjadi, G. Joshi, G.H. Zhu et al., Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 11, 2225–2230 (2011)

    Article  Google Scholar 

  99. B. Yu, M. Zebarjadi, H. Wang et al., Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett. 12, 2077–2082 (2012)

    Article  Google Scholar 

  100. N. Mingo, D. Hauser, N.P. Kobayashi et al., ‘Nanoparticles-in-alloy’ approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9, 711–715 (2009)

    Article  Google Scholar 

  101. W. Kim, A. Majumdar, Phonon scattering cross section of polydispersed spherical nanoparticles. J. Appl. Phys. 99, 084306–7 (2006)

    Article  Google Scholar 

  102. A. Kundu, N. Mingo, D.A. Broido, D.A. Stewart, Role of light and heavy embedded nano particles on the thermal conductivity on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426–5 (2011)

    Article  Google Scholar 

  103. Y.Z. Pei, N.A. Heinz, A. LaLonde, G.J. Snyder, Combination of large nanostructure and complex band structure for high performance lead telluride. Energy Environ. Sci. 4, 3640–3645 (2011)

    Google Scholar 

  104. S.N. Girard, J.Q. He, X.Y. Zhou et al., High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nano structures. J. Am. Chem. Soc. 133, 16588–16597 (2011)

    Google Scholar 

  105. H.Z. Wang, TEM work on AlZn alloys, unpublished work

    Google Scholar 

  106. W. Kim, J. Zide, A. Gossard et al., Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901–04 (2006)

    Article  Google Scholar 

  107. L. Lu, Y.F. Shen, X.H. Chen et al., Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004)

    Article  Google Scholar 

  108. T. Kuribayashi, M.G. Sung, T. Itoh et al., Fabrication of the crystal-oriented thermoelectric materials Bi\(_{2}\)Te\(_{3}\) by slip casting under a high magnetic field. Mater. Trans. 47, 2387–2392 (2006)

    Article  Google Scholar 

  109. L.D. Zhao, B.P. Zhang, J.F. Li et al., Enhanced thermoelectric and mechanical properties in textured n-type Bi\(_{2}\)Te\(_{3}\) prepared by spark plasma sintering. Solid State Sci. 10, 651–658 (2008)

    Article  Google Scholar 

  110. X. Yan, B. Boudel, Y. Ma et al., Experimental studies on anisotropic thermoelectric properties and structure of n-type Bi\(_{2}\)Te\(_{2.7}\)Se\(_{0.3}\). Nano Lett. 10, 3373–3378 (2010)

    Article  Google Scholar 

  111. S. Miura, Y. Sato, K. Fukuda et al., Texture and thermoelectric properties of hot-extruded Bi\(_{2}\)Te\(_{3}\) compound. Mater. Sci. Eng. A 277, 244–249 (2000)

    Article  Google Scholar 

  112. A.I. Hochbaum, R.K. Chen, R.D. Delgado et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)

    Article  Google Scholar 

  113. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli et al., Silicon nanowire as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    Article  Google Scholar 

  114. J.Y. Tang, H.T. Wang, D.H. Lee et al., Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279–4283 (2010)

    Article  Google Scholar 

  115. O. Jessensky, F. Müller, U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173–1175 (1998)

    Article  Google Scholar 

  116. S.P. Zimin, E.S. Gorlachev, V.V. Naumov et al., Fabrication of porous nanostructured lead chacogenide semiconductor for modern thermoelectric and optoelectric. J. Phys.: Conf. Series 291, 012023–06 (2011)

    Google Scholar 

  117. Y.P. He, D. Donadio, J.H. Lee et al., Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano 5, 1839–1844 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by “Solid State Solar-Thermal Energy Conversion Center (S\(^{3}\)TEC)”, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under award number DE-SC0001299/DE-FG02-09ER46577 (GC and ZFR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, W., Ren, Z., Chen, G. (2013). Nanostructured Thermoelectric Materials. In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_11

Download citation

Publish with us

Policies and ethics