Skip to main content

Effectively Grouping Trajectory Streams

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7765))

Abstract

Trajectory data streams are huge amounts of data pertaining to time and position of moving objects. They are continuously generated by different sources exploiting a wide variety of technologies (e.g., RFID tags, GPS, GSM networks). Mining such amount of data is a challenging problem, since the possibility to extract useful information from this peculiar kind of data is crucial in many application scenarios such as vehicle traffic management, hand-off in cellular networks, supply chain management. Moreover, spatial data streams pose interesting challenges for their proper representation, thus making the mining process harder than for classical point data. In this paper, we address the problem of trajectory data streams clustering, that revealed really intriguing as we deal with a kind of data (trajectories) for which the order of elements is relevant. We propose a complete framework starting from data preparation task that allows us to make the mining step quite effective. Since the validation of data mining approaches has to be experimental we performed several tests on real world datasets that confirmed the efficiency and effectiveness of the proposed technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB, pp. 81–92 (2003)

    Google Scholar 

  2. Arthur, D., Vassilvitskii, S.: k-means++ the advantages of careful seeding. In: SODA, pp. 1027–1035 (2007)

    Google Scholar 

  3. Cadez, I.V., Gaffney, S., Smyth, P.: A general probabilistic framework for clustering individuals and objects. In: KDD, pp. 140–149 (2000)

    Google Scholar 

  4. Cao, H., Wolfson, O.: Nonmaterialized motion information in transport networks. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 173–188. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491–502. ACM, New York (2005)

    Google Scholar 

  6. Chong, Z., Ni, W., Xu, L., Xu, Z., Shu, H., Zheng, J.: Approximate k-median of location streams with redundancy and inconsistency. Int. J. of Software and Informatics 4(2), 165–182 (2010)

    Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)

    Google Scholar 

  8. Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Fast detection of xml structural similarity. IEEE TKDE 17(2), 160–175 (2005)

    Google Scholar 

  9. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD, pp. 63–72 (1999)

    Google Scholar 

  10. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: KDD, pp. 330–339 (2007)

    Google Scholar 

  11. Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Wolle, T.: Compressing spatio-temporal trajectories. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 763–775. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2000)

    Google Scholar 

  13. Hönle, N., Grossmann, M., Reimann, S., Mitschang, B.: Usability analysis of compression algorithms for position data streams. In: GIS, pp. 240–249 (2010)

    Google Scholar 

  14. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. In: PVLDB, vol. 1(1), pp. 1068–1080 (2008)

    Google Scholar 

  15. Keogh, E.: Exact indexing of dynamic time warping. In: VLDB, pp. 406–417. VLDB Endowment (2002)

    Google Scholar 

  16. Lee, J.G., Han, J., Li, X.: Trajectory outlier detection: A partition-and-detect framework. In: ICDE, pp. 140–149 (2008)

    Google Scholar 

  17. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD (2007)

    Google Scholar 

  18. Li, Y., Han, J., Yang, J.: Clustering moving objects. In: KDD, pp. 617–622 (2004)

    Google Scholar 

  19. Li, Z., Lee, J.-G., Li, X., Han, J.: Incremental clustering for trajectories. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010, Part II. LNCS, vol. 5982, pp. 32–46. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Lloyd, S.: Least squares quantization in pcm. IEEE TOIT 28 (1982)

    Google Scholar 

  21. Masciari, E.: A complete framework for clustering trajectories. In: ICTAI, pp. 9–16 (2009)

    Google Scholar 

  22. Masciari, E.: Trajectory clustering via effective partitioning. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 358–370. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Nehme, R.V., Rundensteiner, E.A.: SCUBA: Scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1001–1019. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Puschel, M., Rotteler, M.: Fourier transform for the directed quincunx lattice. In: ICASSP (2005)

    Google Scholar 

  25. Secker, A., Taubman, D.: Lifting-based invertible motion adaptive transform (limat) framework for highly scalable video compression. IEEE Trans. on Image Processing 12(12), 1530–1542 (2003)

    Article  Google Scholar 

  26. Veenman, C.J., Reinders, M.J.T.: The nearest subclass classifier: A compromise between the nearest mean and nearest neighbor classifier. IEEE PAMI 27(9), 1417–1429 (2005)

    Article  Google Scholar 

  27. Vlachos, M., Gunopoulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE, p. 673

    Google Scholar 

  28. Wang, W., Yang, J., Muntz, R.R.: Sting: A statistical information grid approach to spatial data mining. In: VLDB, pp. 186–195 (1997)

    Google Scholar 

  29. Yang, J., Hu, M.: TrajPattern: Mining sequential patterns from imprecise trajectories of mobile objects. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 664–681. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Yi, B., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: ICDE, pp. 201–208 (1998)

    Google Scholar 

  31. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: An efficient data clustering method for very large databases. In: SIGMOD, pp. 103–114 (1996)

    Google Scholar 

  32. Zhang, X., Wu, X., Wu, F.: Image coding on quincunx lattice with adaptive lifting and interpolation. In: Data Compression Conf., pp. 193–202 (2007)

    Google Scholar 

  33. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from gps trajectories. In: WWW, pp. 791–800 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costa, G., Manco, G., Masciari, E. (2013). Effectively Grouping Trajectory Streams. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2012. Lecture Notes in Computer Science(), vol 7765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37382-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37382-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37381-7

  • Online ISBN: 978-3-642-37382-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics