Skip to main content

Nasal Defensive Proteins: Distribution and a Biological Function

  • Chapter
  • First Online:
Nasal Physiology and Pathophysiology of Nasal Disorders
  • 2620 Accesses

Abstract

There are various defensive mechanisms in upper respiratory tract mucosal linings such as mechanical and functional barriers. The mechanical barrier of sinonasal mucosa consists of mucus, motile cilia, and respiratory epithelial cells linked by adhesion complexes that include tight junctions. On the other hand, the functional barrier in sinonasal mucosa is dynamic and more complex, being equipped with innate and acquired immune response among resident cells on the epithelia and immunocompetent cells in sinonasal submucosa. Importantly, various types of nasal defensive proteins in human nasal mucosa are responsible for exerting those defensive mechanisms. Those proteins are essential for a defense system against various invading pathogens such as bacteria and viruses and modulate allergic or infective chronic inflammations as well. Those proteins derived from epithelial cells or recruited inflammatory cells are also one of the important key players in the pathogenesis of rhinosinusitis and allergic rhinitis at the epithelial linings of nasal cavity and paranasal sinuses. Those defensive proteins could be classified from constitutional and functional aspects such as surfactants, mucins, antimicrobial peptides, and inflammatory cell-derived enzymes. More widely considered, chemokines, cytokines, and various antibodies can be dealt with as defensive proteins, to provoke cellular interactions against microbial infections or pathogenesis of sinonasal persistent inflammations. In this chapter, the general concept of various types of nasal defensive proteins and its function is introduced, as we focus on surfactants, mucins, and antimicrobial peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audie JP, Janin A, Porchet N, et al. Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem. 1993;41:1479.1485.

    Article  PubMed  Google Scholar 

  • Bals R, Wang X, Wu Z, et al. Human beta-defensin 2 is salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest. 1998;102:874–80.

    Article  PubMed  CAS  Google Scholar 

  • Bourbon JR, Chailley-Heu B. Surfactant protein in the digestive tract, mesentery, and other organs: evolutionary significance. Comp Biochem Physiol. 2001;129:151–61.

    Article  CAS  Google Scholar 

  • Claeys S, De Belder T, Holtappels G, et al. Human β-defensins and toll-like receptors in the upper airway. Allergy. 2003;58(8):748–53.

    Article  PubMed  CAS  Google Scholar 

  • Dutton JM, Goss K, Khubchandani KR, Shah CD, Smith RJH, Snyder JM. Surfactant protein A in rabbit sinus and middle ear mucosa. Ann Otol Rhinol Laryngol. 1999;108:915–24.

    PubMed  CAS  Google Scholar 

  • Ganz T. Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect Immun. 1987;55:568–71.

    PubMed  CAS  Google Scholar 

  • Ganz T et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985;76:1427–35.

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, et al. A peptide antibiotic from human skin. Nature. 1997;387:861–2.

    Article  PubMed  CAS  Google Scholar 

  • Jany B, Gallup M, Tsuda T, Basbaum C. Mucin gene expression in rat airways following infection and irritation. Biochem Biophys Res Commun. 1991;181:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Kao CY, Chen Y, Thai P, et al. IL-17 markedly upregulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol. 2004;173:3482–91.

    PubMed  CAS  Google Scholar 

  • Kerschner JE, Khampang P, Erbe CB, et al. Mucin gene 19(MUC19) expression and response to inflammatory cytokines in middle ear epithelium. Glycoconj J. 2009;26:1275–84.

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Kim SS, Rha KW, Kim CH, Cho JH, Lee CH, et al. Expression and localization of surfactant proteins in human nasal mucosa. Am J Physiol Lung Cell Mol Physiol. 2007;292:879–84.

    Article  Google Scholar 

  • Lee SH, Kim JE, Lim HH, Lee HM, Choi JO. Antimicrobial defensin peptides of the human nasal mucosa. Ann Otol Rhinol Laryngol. 2002;111(2):135–41.

    PubMed  Google Scholar 

  • Lehrer RI, Ganz T, Szklarek D, et al. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest. 1988;81:1829–35.

    Article  PubMed  CAS  Google Scholar 

  • Li D, Wang D, Majumdar S, et al. Localization and up-regulation of mucin (MUC2) gene expression in human nasal biopsies of patients with cystic fibrosis. J Pathol. 1997;181:305.310.

    Article  PubMed  Google Scholar 

  • Li G, Zhang H, Lv J, et al. Tandem repeats polymorphism of MUC20 is an independent factor for the progression of immunoglobulin A nephropathy. Am J Nephrol. 2006;26:43–9.

    Article  PubMed  Google Scholar 

  • Lin J, Ho S, Paparella M, et al. Mucin gene expression in the rat middle ear; an improved method for RNA harvest. Ann Otol Rhinol Laryngol. 1999;108(8):762–8.

    PubMed  CAS  Google Scholar 

  • Lin J, Tsuprun V, Kawano H, et al. Characterization of mucins in human middle ear and Eustachian tube. Am J Physiol. 2001;280(6):1157–67.

    Google Scholar 

  • Lin J, Tsuboi Y, Rimell F, et al. Expression of mucins in mucoid otitis media. J Assoc Res Otolaryngol. 2003;4(3):384–93.

    Article  PubMed  Google Scholar 

  • Mason RJ, Greene K, Voelker AR. Surfactant protein A and surfactant protein D in health and disease. Am J Physiol Lung Cell Mol Physiol. 1998;275:1–13.

    Google Scholar 

  • Moon SK, Lee HY, Li JD, et al. Activation of a Src-dependent RAL-MEK1/2-ERK signaling pathway is required for IL-1 alpha-induced upregulation of beta-defensin 2 in human middle ear epithelial cells. Biochim Biophys Acta. 2002;1590:41–51.

    Article  PubMed  CAS  Google Scholar 

  • Moon SK, Lee HY, Pan H, et al. Synergistic effect of interleukin 1 alpha on nontypable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells. BMC Infect Dis. 2006;6:12–20.

    Article  PubMed  Google Scholar 

  • Nagaoka I, Niyonsaba F, Tsutsumi-Ishii Y, et al. Evaluation of effect of human beta-defensins on neutrophil apoptosis. Int Immunol. 2008;20:543–53.

    Article  PubMed  CAS  Google Scholar 

  • Panyutich AV, Szold O, Poon PH, et al. Identification of defensin binding to C1 complement. FEBS Lett. 1994;356:169–73.

    Article  PubMed  CAS  Google Scholar 

  • Preciado D, Goyal S, Rahimi M, et al. MUC5B is the predominant mucin glycoprotein in chronic otitis media fluid. Pediatr Res. 2010a;68(3):231–6.

    Article  PubMed  CAS  Google Scholar 

  • Preciado D, Kuo E, Ashktorab S, et al. Cigarette smoke activates NF-kappa-B mediated TNF-alpha release from mouse middle ear cells. Laryngoscope. 2010b;120(12):2508–15.

    Article  PubMed  CAS  Google Scholar 

  • Selsted ME, Szklarek D, Ganz T, et al. Activity of rabbit leukocyte peptides against Candida albicans. Infect Immun. 1985;49:202–6.

    PubMed  CAS  Google Scholar 

  • Van Wetering S, Mannesse-Lazeroms S, Van Sterkenburg MA, et al. Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol. 1997;272:888–96.

    Google Scholar 

  • Vora P, Youdim A, Thomas LS, et al. β-defensin 2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol. 2004;173:5398–405.

    PubMed  CAS  Google Scholar 

  • Voynow JA, Selby DM, Rose MC. Mucin gene expression (MUC1, MUC2, and MUC5/5AC) in nasal epithelial cells of cystic fibrosis, allergic rhinitis, and normal individuals. Lung. 1998;176:345–54.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhang Z, Louboutin JP, et al. Airway epithelia regulate expression of human β-defensin 2 through toll-like receptor 2. FASEB J. 2003;17:1727–9.

    PubMed  CAS  Google Scholar 

  • Weaver TE, Conkright JJ. Function of surfactant proteins B and C. Annu Rev Physiol. 2001;63:555–78.

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Harder J, Wehkamp K, et al. NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli nissle 1917: a novel effect of a probiotic bacterium. Infect Immun. 2004;72:5750–8.

    Article  PubMed  CAS  Google Scholar 

  • Wright JR. Pulmonary surfactant: a front line of lung host defense. J Clin Invest. 2003;111:1453–5.

    PubMed  CAS  Google Scholar 

  • Yang D, Biragyn A, Kwak LW, et al. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 2002;23:292–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Kawauchi MD, DMSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawauchi, H. (2013). Nasal Defensive Proteins: Distribution and a Biological Function. In: Önerci, T. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37250-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37250-6_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37249-0

  • Online ISBN: 978-3-642-37250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics