Skip to main content
  • 1943 Accesses

Abstract

Plant breeding has a limited success for developing new cultivars with enhanced adaptation to drought-prone environments, although it has been pursued for various decades. Water use efficiency and water productivity by crops are being sought by agricultural researchers to address water scarcity in drought-prone environments across the world. They may be improved through genetic enhancement. Research on the mechanisms underlying the efficient use of water by crops and water productivity remains essential for succeeding in this endeavor. Advances in genetics, “omics,” precise phenotyping, and physiology coupled with new developments in bioinformatics and phenomics can provide new insights on traits that enhance adaptation to water scarcity. This chapter provides an update on research advances and breeding main grain crops for drought-prone environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbicodo EM, Fatokun CA, Muranaka S, Visser RGF, van der Linder CG (2009) Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica 167:353–370

    Google Scholar 

  • Araus JL, Slafer G, Reynolds MP, Royo C (2007) Plant breeding and drought in cereals: what we should breed for? Ann Bot 89:925–940

    Google Scholar 

  • Asfaw A, Blair MW, Struik PC (2012) Multienvironment quantitative trait loci analysis for photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress. G3 2:579–595

    PubMed  CAS  Google Scholar 

  • Bänziger M, Setimela PS, Hodson D, Vivek B (2004) Breeding for improved drought tolerance in maize adapted to southern Africa. In: New directions for a diverse planet, Proceedings of the 4th international crop science congress, Brisbane, Australia, 26 Sep–1 Oct 2004 (Published on CDROM)

    Google Scholar 

  • Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved drought tolerance in maize adapted to southern Africa. Agric Water Manag 80:212–224

    Google Scholar 

  • Beebe S, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592

    Google Scholar 

  • Belko N, Zaman-Allah M, Cisse N, Diop ND, Zombre G, Ehler JD, Vadez V (2012) Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought tolerant cowpea. Funct Plant Biol. doi: 10.1007/FM11282

    Google Scholar 

  • Bennet J (2003) Opportunities for increasing water productivity of CGIAR crops to plant breeding and molecular biology. In: Kijne JW, Barker R, Molden D (eds) Water productivity in agriculture: limits and opportunities from improvement. CAB International, Wallingford, Oxon, pp 103–126

    Google Scholar 

  • Bernier J, Atlin GN, Serraj R, Kumar A, Spaner D (2008) Breeding upland rice for drought resistance (a review). Sci Food Agric 88:927–939

    CAS  Google Scholar 

  • Bernier J, Serraj R, Kumar A, Venuprasad R, Impa S, Gowda V, Oane R, Spaner D, Atlin G (2009) Increased water uptake explains the effect of qtl12.1 a large-effect drought-resistance QTL in upland rice. Field Crop Res 110:139–146

    Google Scholar 

  • Bimpong IK, Serraj R, Chin JH, Mendoza EMT, Hernandez J, Mendioro MS (2011a) Determination of genetic variability for physiological traits related to drought tolerance in African rice (Oryza glaberrima). J Plant Breed Crop Sci 3:60–67

    Google Scholar 

  • Bimpong IK, Serraj R, Chin JH, Ramos J, Mendoza EMT, Hernandez J, Mendioro MS, Brar DS (2011b) Identification of QTLs for drought-related traits in alien introgression lines derived from crosses of rice (Oryza sativa cv IR64) × O. glaberrima under lowland moisture stress. J Plant Biol 54:237–250

    Google Scholar 

  • Blair MW, Galeano CH, Tovar E, Torres MCM, Castrillón AV, Beebe SE, Rao IM (2012) Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Mol Breed 29:71–88

    PubMed  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188

    PubMed  CAS  Google Scholar 

  • Bolaños J, Edmeades GO (1993a) Eight cycles of selection for drought tolerance in lowland tropical maize. 1. Responses in grain yield, biomass, and radiation utilization. Field Crop Res 31:233–252

    Google Scholar 

  • Bolaños J, Edmeades GO (1993b) Eight cycles of selection for drought tolerance intropical maize. II. Responses in reproductive behavior. Field Crops Res 31:253–268

    Google Scholar 

  • Bolaños J, Edmeades GO, Martinez L (1993) Eight cycles of selection for drought tolerance in tropical maize. III. Responses in drought-adaptive physiological and morphological traits. Field Crops Res 31:269–286

    Google Scholar 

  • Boonjung H, Fukai S (1996) Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield. Field Crops Res 48:47–55

    Google Scholar 

  • Boyle MG, Boyer JS, Morgan PW (1991) Stem infusion of liquid culture medium prevents reproductive failure of maize at low water potential. Crop Sci 31:1246–1252

    Google Scholar 

  • Brou YC, Zézé A, Diouf O, Eyletters M (2007) Water stress induces overexpression of superoxide dismutases that contribute to the protection of cowpea plants against oxidative stress. Afr J Biotechnol 6:1982–1986

    CAS  Google Scholar 

  • Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches for maize improvement for drought tolerance. J Exp Bot 53:13–25

    PubMed  CAS  Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90:19–34

    Google Scholar 

  • Centritto M, Lauteri M, Monteverdi C, Serraj R (2009) Leaf gas exchange, carbon isotope discrimination and grain yield in contrasting rice genotypes subjected to water deficits during reproductive stage. J Exp Bot 60:2325–2339

    PubMed  CAS  Google Scholar 

  • Chapman SC (2008) Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica 161:195–208

    Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    PubMed  CAS  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2009) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Google Scholar 

  • Courtouis B, Ahmadi N, Khowaja F, Price AH, Rami J-F, Frouin J, Hamelim C, Ruiz M (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128

    Google Scholar 

  • Cruickshank AW, Rachaputi NC, Wright GC, Nigam SN (eds) (2003) Breeding of drought-resistant peanuts. ACIAR Proceedings 112. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • de Wit M, Stankiewicz J (2006) Changes in surface water supply across Africa with predicted climate change. Science 311:1917–1921

    PubMed  Google Scholar 

  • Dwivedi SL, Sahrawat K, Upadhyaya H, Ortiz R (2013) Food, nutrition and agro-biodiversity under global climate change. Adv Agron 120:1–128

    Google Scholar 

  • Edmeades GO, Bolaños J, Lafitte HR, Rajaram S, Pfeiffer W, Fischer RA (1989) Traditional approaches to breeding for drought resistance in cereals. In: Baker FWG (ed) Drought resistance in cereals. ICSU–CABI, Wallingford, pp 27–52

    Google Scholar 

  • Farooq M, Kobayashi N, Wahid A, Ito O, Basra SMA (2009) Strategies for producing more rice with less water. Adv Agron 101:351–388

    Google Scholar 

  • Farooq M, Kobayashi N, Ito O, Wahid A, Serraj R (2010) Broader leaves result in better performance of indica rice under drought stress. J Plant Physiol 167:1066–1075

    PubMed  CAS  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    PubMed  CAS  Google Scholar 

  • Foti R, Mapiye C, Mutenje M, Mwale M, Mlambo N (2008) Farmer participatory screening of maize seed varieties for suitability in risk prone, resource-constrained smallholder farming systems of Zimbabwe. Afr J Agric Res 3:180–185

    Google Scholar 

  • Fuad-Hassan A, Tardieu F, Turc O (2008) Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell Environ 31:1349–1360

    PubMed  Google Scholar 

  • Gilbert N (2010) Food: inside the hothouse of industry. Nature 466:548–551

    PubMed  CAS  Google Scholar 

  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc B 365:2973–2989

    Google Scholar 

  • Gouda PK, Varma CMK, Saikumar S, Kiran B, Shenoy V, Sashidhar HE (2012) Direct selection for grain yield under moisture stress in Oryza sativa cv. IR58025B × O. meridionalis population. Crop Sci 52:644–653

    Google Scholar 

  • Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crops Res 122:1–13

    Google Scholar 

  • Grant RF, Jackson BS, Kiniry JR, Arkin GF (1989) Water deficit timing effects on yield components in maize. Agron J 81:61–65

    Google Scholar 

  • Guan YS, Serraj R, Liu SH, Xu JL, Ali J, Wang WS, Venus E, Zhu LH (2010) Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). J Exp Bot 61:4145–4156

    PubMed  CAS  Google Scholar 

  • Hegde VS, Mishra SK (2009) Landraces of cowpea, Vigna unguiculata (L.) Walp., as potential sources of genes for unique characters in breeding. Genet Resour Crop Evol 56:615–627

    CAS  Google Scholar 

  • Hoffman B, Aranyi NR, Molnár-Lán R (2010) Characterization of wheat-barley introgression lines for drought tolerance. Acta Agron Hung 58:211–218

    Google Scholar 

  • Hund A, Ruta N, Liedgens M (2008) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 318:311–325

    Google Scholar 

  • Hyman G, Fujisaka S, Jones P, Wood S, de Vicente C, Dixon J (2008) Strategic approaches to targeting technology generation: assessing the coincidence of poverty and drought-prone crop production. Agric Syst. doi: 10.1016/j.agsy.2008.04.001

    Google Scholar 

  • Izanloo A, Condon AG, Langridge P, Tester M (2008) Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot 59:3327–3346

    PubMed  CAS  Google Scholar 

  • Jones MP, Dingkuhn M, Aluko GK, Monde S (1997) Interspecific O. sativa L. O. glaberrima Steud: progenies in upland rice improvement. Euphytica 92:237–246

    Google Scholar 

  • Kathiresan A, Lafitte HR, Chen J, Mansueto L, Bruskiewich R, Bennett J (2006) Gene expression microarrays and their application in drought stress research. Field Crops Res 97:101–110

    Google Scholar 

  • Kato Y, Henry A, Fujita D, Katsura K, Kobayashi N, Serraj R (2011) Physiological characterization of introgression lines derived from an indica rice cultivar, IR64, adapted to drought and water-saving agriculture. Field Crops Res 123:130–138

    Google Scholar 

  • Kirigwi FM, van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    CAS  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Gaur PM, Upadhyaya HD, Vadez V (2010) Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) mini core germplasm. Field Crops Res 119:322–330

    Google Scholar 

  • Laffite HR, Courtois B (2002) Interpreting cultivar × environment interactions for yield in upland rice: assigning value to drought-adaptive traits. Crop Sci 42:1409–1420

    Google Scholar 

  • Laffite HR, Ismail A, Bennett J (2004) Abiotic stress tolerance in rice for Asia: progress and the future. In: New directions for a diverse planet. Proceedings of the 4th international crop science congress, Brisbane, Australia, 26 Sept–1 Oct 2004 (Published on CDROM)

    Google Scholar 

  • Laffite HR, Li ZK, Vijayakumar CHM, Gao YM, Shi Y, Xu JL, Fu BY, Yu SB, Ali AJ, Domingo J, Maghirang R, Torres R, Mackill D (2006) Improvement of rice drought tolerance through backcross breeding: evaluation of donors and selection in drought nurseries. Field Crops Res 97:77–86

    Google Scholar 

  • Liu JX, Liao DQ, Oane R, Estenor L, Yang XE, Li ZC, Bennet J (2006) Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. Field Crops Res 97:87–100

    Google Scholar 

  • Lizana C, Wentworth M, Martinez JP, Villegas D, Meneses R, Murchie EH, Pastenes C, Lercari B, Vernieri P, Horton P, Pinto M (2006) Differential adaptation of two varieties of common bean to abiotic stress. I. Effects of drought on yield and photosynthesis. J Exp Bot 57:685–697

    PubMed  CAS  Google Scholar 

  • Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J-M, Cao M, Rong T, Xu Y (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107:19585–19590

    PubMed  CAS  Google Scholar 

  • Luo M, Liu J, Lee RD, Scully BT, Guo B (2010) Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. J Integr Plant Biol 52:1059–1074

    PubMed  CAS  Google Scholar 

  • Malosetti M, Ribaut JM, Vargas M, Crossa J, Boer MP, van Eeuwijk FA (2007a) Multitrait multi-environment QTL modelling for drought-stress adaptation in maize. In: Spiertz JHC, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene-plant-crop relations. Springer, Dordrecht, pp 25–36

    Google Scholar 

  • Malosetti M, Ribaut JM, Vargas M, Crossa J, van Eeuwijk FA (2007b) A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161:241–257

    Google Scholar 

  • Manès Y, Gomez HF, Puhl L, Reynolds M, Braun HJ, Trethowan R (2012) Genetic yield gains of the CIMMYT international semi-arid wheat yield trials from 1994 to 2010. Crop Sci 52:1543–1552

    Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut J-M (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    PubMed  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet. doi: 10.1007/s00122-012-1904-9

    Google Scholar 

  • Molden D, Oweis T, Steduto P, Bindraban P, Hanjra MA, Kijne J (2010) Improving agricultural water productivity: between optimism and caution. Agric Water Manag 97:528–535

    Google Scholar 

  • Monneveux P, Sánchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci 46:180–191

    Google Scholar 

  • Monneveux P, Sánchez C, Tiessen A (2008a) Future progress in drought tolerance in maize needs new secondary traits and cross combinations. J Agric Sci Camb 146:287–300

    Google Scholar 

  • Monneveux P, Sheshshayee MS, Akther J, Ribaut J-M (2008b) Using carbon isotope discrimination to select maize (Zea mays L.) inbred lines and hybrids for drought tolerance. Plant Sci 173:390–396

    Google Scholar 

  • Muchero W, Ehlers JD, Roberts PA (2008) Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes. Crop Sci 48:541–552

    CAS  Google Scholar 

  • Muchero W, Ehlers JD, Close TJ, Roberts PA (2009) Mapping QTL for drought stress induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 118:849–863

    PubMed  CAS  Google Scholar 

  • Mullan DJ, Reynolds MP (2010) Quantifying genetic effects of ground cover on soil water evaporation using digital imaging. Funct Plant Biol 37:703–712

    Google Scholar 

  • Nigam SN, Chandra S, Sridevi KR, Bhukta M, Reddy AGS, Nageswara Rao RC, Wright GC, Reddy PV, Deshmukh MP, Mathur RK, Basu MS, Vasundhara S, Varman PV, Nagda AK (2005) Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut. Ann Appl Biol 146:433–439

    Google Scholar 

  • Ortiz R, Iwanaga M, Reynolds MP, Wu H, Crouch JH (2007) Overview on crop genetic engineering for drought-prone environments. J Semi-Arid Trop Agric Res 4. http://www.icrisat.org/journal/SpecialProject/sp3.pdf

  • Parent B, Suard B, Serraj R, Tardieu F (2010) Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Plant Cell Environ 33:1256–1267

    PubMed  Google Scholar 

  • Passioura J (2004) Increasing crop productivity when water is scarce – from breeding to field management. In: New directions for a diverse planet. Proceedings of the 4th international crop science congress, Brisbane, Australia, 26 Sept–1 Oct 2004 (Published on CDROM)

    Google Scholar 

  • Passoura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117

    Google Scholar 

  • Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9:747–758

    PubMed  CAS  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    PubMed  Google Scholar 

  • Quarrie SA, Lazić-Jančić V, Kovačević D, Steed A, Pekić S (1999) Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot 50:1299–1306

    CAS  Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132

    PubMed  CAS  Google Scholar 

  • Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci 42:739–745

    Google Scholar 

  • Reynolds MP, Mujeeb-Kazi A, Sawkins M (2005) Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Ann Appl Biol 146:239–259

    CAS  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    PubMed  CAS  Google Scholar 

  • Ribaut J-M, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    PubMed  CAS  Google Scholar 

  • Ribaut J-M, Hoisington DH, Deutsch JA, Jiang C, Gonzalez-de-Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    CAS  Google Scholar 

  • Ribaut J-M, Hoisington DH, Deutsch JA, Jiang C, Gonzalez-de-Leon D (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Google Scholar 

  • Richards RA, Condon AG, Rebetzke GJ (2001) Traits to improve yield in dry environments. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. Centro Internacional de Mejoramiento de Maíz y Trigo, Mexico DF, pp 88–100

    Google Scholar 

  • Rosen S, Scott L (1992) Famine grips sub-Saharan Africa. Outlook Agric 191:20–24

    Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2010) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    Google Scholar 

  • Ruta N, Stamp P, Liedgens M, Fracheboud Y, Hund A (2010) Traits and yield components of tropical maize under water stress conditions. Crop Sci 50:1385–1392

    CAS  Google Scholar 

  • Sadok W, Sinclair TR (2011) Crops yield increase underwater-limited conditions: Review of recent physiological advances for soybean genetic improvement. Adv Agron 113:325–349

    Google Scholar 

  • Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci 14:488–496

    PubMed  CAS  Google Scholar 

  • Sellamuthu R, Liu GF, Chandra Babu R, Serraj R (2011) Genetic analysis and validation of quantitative trait loci associated with reproductive-growth traits and grain yield under drought stress in a doubled haploid line population of rice (Oryza sativa L.). Field Crops Res 124:46–58

    Google Scholar 

  • Serraj R, Dimayuga G, Gowda V, Guan Y, He H, Impa S, Liu DC, Mabesa RC, Sellamuthu R, Torres R (2008) Drought-resistant rice: physiological framework for an integrated research strategy. In: Serraj R, Bennett J, Hardy B (eds) Drought frontiers in rice – crop improvement for increased rainfed production. World Scientific, Singapore, pp 139–170

    Google Scholar 

  • Serraj R, Kumar A, McNally KL, Slamet-Loedin I, Bruskiewich R, Mauleon R, Cairns J, Hijmans RJ (2009) Improvement of drought resistance in rice. Adv Agron 103:41–99

    CAS  Google Scholar 

  • Serraj R, McNally KL, Slamet-Loedin I, Kohli A, Haefele SM, Atlin G, Kumar A (2011) Drought resistance improvement in rice: an integrated genetic and resource management strategy. Plant Prod Sci 14:1–14

    Google Scholar 

  • Tambussi EA, Bort J, Araus JL (2007) Water use efficiency in C 3 cereals under Mediterranean conditions: a review of physiological aspects. Ann Appl Biol 150:307–321

    Google Scholar 

  • Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 8:9–14

    PubMed  CAS  Google Scholar 

  • Tardieu F, Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol 13:206–212

    PubMed  Google Scholar 

  • Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137:791–793

    PubMed  CAS  Google Scholar 

  • Tollefson J (2011) Drought-tolerant maize gets US debut. Nature 469:144

    PubMed  CAS  Google Scholar 

  • Trethowan RM, Crossa J, van Ginkel M, Rajaram S (2001) Relationships among bread wheat international yield testing locations in dry areas. Crop Sci 41:1461–1469

    Google Scholar 

  • Trethowan RM, van Ginkel M, Rajaram S (2002) Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci 42:1441–1446

    Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2002) Mapping QTLs regulating morphophysiological traits and yield in drought-stressed maize: case studies, shortcomings and perspectives. Ann Bot 89:941–963

    PubMed  CAS  Google Scholar 

  • Tuberosa R, Giuliani S, Parry MAJ, Araus JL (2007a) Improving water use efficiency in Mediterranean agriculture: what limits the adoption of new technologies? Ann Appl Biol 150:157–162

    Google Scholar 

  • Tuberosa R, Salvi S, Giullani S, Sanguineti MC, Bellotti M, Conti S, Landi P (2007b) Genome-wide approaches to investigate and improve maize response to drought. Crop Sci 47:S120–S141

    Google Scholar 

  • Turral H, Burke J, Faurès J-M (2011) Climate change, water and food security. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Venuprasad R, Impa SM, Gowda RPV, Atlin GN, Serraj R (2011) Rice near-isogenic-lines (NILs) contrasting for grain yield under lowland drought stress. Field Crop Res 123:36–46

    Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

    CAS  Google Scholar 

  • Verulkar SB, Mandal NP, Dwivedi JL, Singh BN, Sinha PK, Mahato RN, Dongre P, Singh ON, Bose LK, Swain P, Robin S, Chandrababu R, Senthil S, Jain A, Shashidhar HE, Hittalmani S, Vera Cruz C, Paris T, Raman A, Haefele S, Serraj R, Atlin G, Kumar A (2010) Breeding resilient and productive genotypes adapted to drought-prone rainfed ecosystem of India. Field Crops Res 117:197–208

    Google Scholar 

  • Wassmann R, Jagadish SVKS, Heuer S, Ismail A, Redona E, Serraj R, Singh RK, Howell G, Pathak H, Sumfleth K (2009) Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Adv Agron 101:59–121

    Google Scholar 

  • Welcker C, Boussuge B, Bencivenni C, Ribaut JM, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J Exp Bot 58:339–349

    PubMed  CAS  Google Scholar 

  • Wu X, Wang Z, Chang X, Jing R (2010) Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J Exp Bot. doi: 10.1093/jxb/erq117

    Google Scholar 

  • Xu Y, This D, Pausch RC, Vonhof WM, Coburn JR, Comstock JP, McCouch SR (2009) Leaf-level water use efficiency determined by carbon isotope discrimination in rice seedlings. Theor Appl Genet 118:1065–1081

    PubMed  CAS  Google Scholar 

  • Zaidi PH, Yadav M, Singh DK, Singh RP (2008) Relationship between drought and excess moisture tolerance in tropical maize (Zea mays L.). Aust J Crop Sci 1:78–96

    Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to control of water use. Funct Plant Biol 38:270–281

    Google Scholar 

  • Zhu L, Liang ZS, Xu X, Li SH, Jing JH, Monneveux P (2008) Relationships between carbon isotope discrimination and leaf morphophysiological traits in spring-planted spring wheat under drought and salinity stress in Northern China. Aust J Agric Res 59:941–949

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodomiro Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ortiz, R. (2013). Drought Tolerance. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37048-9_5

Download citation

Publish with us

Policies and ethics