Skip to main content

General Properties of Major Food Components

  • Reference work entry
Handbook of Food Chemistry

Abstract

Food consists of major constituents or materials. Its composition will affect nutritional and sensory quality of food product, therefore elucidating the composition of food is very essential for food production chain. The major compositions of most foods are including water, lipid, protein, carbohydrate, and enzyme. Each component has its own physical and chemical characteristics which contribute to the final properties of food products. This chapter focuses on the structure, physicochemical properties, and functionality of water, lipid, protein, carbohydrate, and enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akoh CC, Min DB (2002) Food lipids, chemistry, nutrition and biotechnology. Marcel Dekker, New York

    Book  Google Scholar 

  • Angibaud P (1986) Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons. I. Binary systems water-polyalcohol. Cryobiology 23(453–469)

    Google Scholar 

  • Ashbaugh HS, Truskett TM, Debenedetti PG (2002) A simple molecular thermodynamic theory of hydrophobic hydration. J Chem Phys 116:2907–2921

    Article  CAS  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2009) Food chemistry, 4th revised and extended edn. Springer, Berlin/Heidelberg

    Google Scholar 

  • Boutron P, Mehl P, Kauffmann A, Brady GW, Romanov WJ (1960) Structure of water. J Chem Phys 32:106

    Google Scholar 

  • Boutron P, Mehl P, Kaufmann A, Angibaud P (1986) Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons: I. Binary systems water-polyalcohol. Cryobiology 23(5):453–469

    Google Scholar 

  • Brady GW, Romanow WJ (1960) Structure of water. The Journal of Chemical Physics 32(1):306–306

    Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  CAS  Google Scholar 

  • Cho SS, Prosky L, Dreher M (eds) (1999) Complex carbohydrates in foods. Marcel Dekker, New York

    Google Scholar 

  • Copeland RA (2000) Enzymes. A practical introduction to structure, function, mechanism, and data analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • Cornish-Bowden A (1995) Fundamentals of enzyme kinetics. Portland Press, London

    Google Scholar 

  • Damodaran S (2008) Amino acids, peptides, and proteins. In: Damodaran S, Kirk P, Fennema OR (eds) Fennema’s food chemistry, 4th edn. CRC Press/Taylor and Francis Group, Boca Raton, pp 219–329

    Google Scholar 

  • Damodaran S, Parkin K, Fennema OR (eds) (2008) Fennema’s food chemistry. CRC Press, Boca Raton

    Google Scholar 

  • De Man JM (1999) Principle of food chemistry, 3rd edn. Springer, New York

    Google Scholar 

  • Decker EA, McClements DJ (2001) Transition metal and hydroperoxide interactions: an important determinant in the oxidative stability of lipid dispersions. Inform 12:251–255

    Google Scholar 

  • Duckworth RB, Allison JY, Clapperton HA (1976) The aqueous environment for change. In: Davies R, Birch GG, Parker KJ (eds) Intermediate moisture foods. Applied Science, London

    Google Scholar 

  • Erickson MD, Frey N (1994) Property-enhanced oils in food applications. Food Technol 48(11):63–68

    CAS  Google Scholar 

  • Fennema OR (1973) Water and ice. In: Low temperature preservation of foods and living matter. Marcel Dekker, New York

    Google Scholar 

  • Fennema OR (1978) Enzyme kinetics at low temperature and reduced water activity. In: Crowe JH, Clegg JH (eds) Dry biological systems. Academic, New York, pp 297–322

    Google Scholar 

  • Fennema OR (1996) Food chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Fischer E (1894) Influence of configuration on the action of enzymes. Ber Deut Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  • Ghotra BS, Dyal SD, Narine SS (2002) Lipid shortenings: a review. Food Res Int 35:1015–1048

    Article  CAS  Google Scholar 

  • Giese J (1996) Fats, oils, and fat replacers. Food Technol 50(4):78–84

    CAS  Google Scholar 

  • Gutfreund H (1972) Enzymes: physical principles. Wiley, London

    Google Scholar 

  • Hodge JE (1953) Chemistry of browning reactions in model systems. J Agric Food Chem 1:928–943

    Article  CAS  Google Scholar 

  • Kinsella JE, Rector DJ, Phillips LG (1994) Physicochemical properties of proteins: texturization via gelation, glass and film formation. In: Yada RY, Jackman RL, Smith JL (eds) Protein structure-function relationships in foods. Springer, New York, pp 1–21

    Google Scholar 

  • Labuza TP, Cassil S, Sinskey AJ (1972) Stability of intermediate moisture foods. II. Microbiology. J Food Sci 37:160–162

    Article  Google Scholar 

  • Lawler PJ, Dimick PS (2002) Crystallization and polymorphism of fats. In: Akoh CC, Min DB (eds) Food lipids, chemistry, nutrition and biotechnology. Marcel Dekker, New York

    Google Scholar 

  • Lee FA (1958) The effect of blanching on the carbonyl content of the crude lipid during the storage of frozen peas. Food Res 23:85–86

    Article  CAS  Google Scholar 

  • Lee FA (1983) Basic food chemistry. The Avi Publishing, Westport

    Book  Google Scholar 

  • Lewin S (1974) Displacement of water and its control of biochemical reactions. Academic, London

    Google Scholar 

  • Lonchampt P, Hartel RW (2004) Fat bloom in chocolate and compound coatings. Eur J Lipid Sci Technol 106:241–274

    Article  CAS  Google Scholar 

  • Luck WAP (1981) Structures of water in aqueous systems. In: Water activity: influences on food quality. Academic, New York

    Google Scholar 

  • Marangoni A, Narine S (2002) Physical properties of lipids. Marcel Dekker, New York

    Book  Google Scholar 

  • Martins SIFS, Jongen WMF, Boekel MAJS (2001) A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci Technol 11:364–373

    Article  Google Scholar 

  • McClements DJ (2002) Theoretical prediction of emulsion color. Adv Colloid Interface Sci 97:63–89

    Article  CAS  Google Scholar 

  • McClements DJ (2004) Food emulsions: principles, practice and techniques, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • McGrady J (1994) More-healthful fats and oils. Food Technol 48(11):148

    Google Scholar 

  • Michaelis L, Menten ML (1913) The kinetics of invertase action. Biochemistry 49:333–369

    CAS  Google Scholar 

  • Min DB, Boff JM (2002) Lipid oxidation in edible oil. In: Akoh CC, Min DB (eds) Food lipids, chemistry, nutrition and biotechnology. Marcel Dekker, New York

    Google Scholar 

  • Moran DPJ (1994) Fats in spreadable products. In: Fats in food products. Blackie Academic and Professional, London

    Chapter  Google Scholar 

  • Nagodawithana T, Reed GE (1993) Enzymes in food processing, 3rd edn. Academic, New York

    Google Scholar 

  • Nelson DL, Cox MM (2013) Lehninger principles of biochemistry. Worth Publishers, New York

    Google Scholar 

  • Nielsen SS (2003) Food analysis, 3rd edn. Kluwer, New York

    Google Scholar 

  • Northrop JH (1932) Crystalline trypsin IV. reversibility of the inactivation and denaturation of trypsin by heat. The Journal of general physiology 16(2):323–337

    Google Scholar 

  • O’Keefe SF (2002) Nomenclature and classification of lipids. In: Akoh CC, Min DB (eds) Food lipids, chemistry, nutrition and biotechnology. Marcel Dekker, New York

    Google Scholar 

  • Pleiss J, Fischer M, Schmid RD (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids 93:67–80

    Article  CAS  Google Scholar 

  • Pszczola DE (2000) Putting fat back into foods. Food Technol 54(12):58–60

    Google Scholar 

  • Rousseau D, Marangoni AG (2002) Chemical interesterification of food lipids: theory and practice. In: Akoh CC, Min DB (eds) Food lipids, chemistry, nutrition and biotechnology. Marcel Dekker, New York

    Google Scholar 

  • Schmidt SJ (2004) Water and solids mobility in foods. Adv Food Nutr Res 48:1–101

    Article  CAS  Google Scholar 

  • Scott WJ (1957) Water relations of food spoilage organisms. Adv Food Res 7:83–127

    Article  CAS  Google Scholar 

  • Slade L, Levine H (1995) Polymer science approach to water relationships in foods. In: Barbosa-Canovas GV, Welti-Chanos J (eds) Food preservation by moisture control. Technomic Press, Lancaster

    Google Scholar 

  • Stephen AM (ed) (1995) Food polysaccharides and their applications. Marcel Dekker, New York

    Google Scholar 

  • Stick RV, Williams SJ (2009) Carbohydrates: the essential molecules of life. Elsevier, Amsterdam

    Google Scholar 

  • Timms RE (1991) Crystallization of fats. Chem Ind May 342–349

    Google Scholar 

  • Ustunol Z (2015) Amino acids, peptides, and proteins. In: Ustunol Z (ed) Applied food protein chemistry, 1st edn. Wiley, Chichester, pp 11–21

    Google Scholar 

  • Vaclavik VA, Christian EW (2014) Essential of food science, 4th edn. Springer, New York

    Book  Google Scholar 

  • Walstra P (2003) Physical chemistry of foods. Marcel Dekker, New York

    Google Scholar 

  • Weiss TJ (1983) Food oils and their uses, 2nd edn. AVI Publishing, Westport

    Google Scholar 

  • Whistler RL, BeMiller JN (eds) (1993) Industrial gums, 3rd edn. Academic, San Diego

    Google Scholar 

  • White GW, Cakebread SH (1966) The glassy state in certain sugar-containing food products. J Food Technol 1:73–82

    Article  CAS  Google Scholar 

  • White GW, Cakebread SH (1969) Importance of the glassy state in certain sugar-containing food products. Food Sci Technol Proc Int Congr 1:227–235

    Google Scholar 

  • Whitehurst RJ, Law BAE (2002) Enzymes in food technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    Article  CAS  Google Scholar 

  • Withers S (2015) Anomeric centre (alpha and beta). CAZypedia. http://www.cazypedia.org/index.php/Anomeric_centre_(alpha_and_beta). Accessed 11 May 2015

  • Zayas JF (1997) Functionality of proteins in food. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Zhuang H, Barth MM, Hildebrand D (2002) Fatty acid oxidation in plant lipids. In: Akoh CC, Min DB (eds) Food lipids, chemistry, nutrition and biotechnology. Marcel Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christofora Hanny Wijaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Wijaya, C.H., Wijaya, W., Mehta, B.M. (2015). General Properties of Major Food Components. In: Cheung, P., Mehta, B. (eds) Handbook of Food Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36605-5_35

Download citation

Publish with us

Policies and ethics