Skip to main content

Role of Biologicals in Meniscus Surgery

  • Reference work entry
  • First Online:
Sports Injuries
  • 170 Accesses

Abstract

Meniscus healing in the avascular, central zone, which includes more than two-thirds of the meniscus from the central region to the periphery, is strongly impaired, mainly because of the diminished blood supply but due to intrinsic factors. Over the last 30 years, an increasing number of research studies have focused on the enhancement of meniscus healing utilizing biologicals such blood products, growth factors, and certain types of cells including progenitor cells or surgical techniques such as synovial and meniscus rasping, needling, and trephination aiming to enhance biologically healing. The results varied significantly. Furthermore, most of these studies were in vitro or animal trials. Thus far, there has been no clear evidence to support the use of any of these biologicals. However, because of the ease of its usage and its low costs, many surgeons perform meniscus needling as well as synovial and meniscus rasping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hamid M, Hussein MR, Ahmad AF, Elgezawi EM (2005) Enhancement of the repair of meniscal wounds in the red-white zone (middle third) by the injection of bone marrow cells in canine animal model. Int J Exp Pathol 86:117–23

    Article  Google Scholar 

  • Andersson-Molina H, Karlsson H, Rockborn P (2002) Arthroscopic partial and total meniscectomy: A long-term follow-up study with matched controls. Arthroscopy 18:183–189

    Article  Google Scholar 

  • Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, Yoo J (2008) Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A 85:445–455

    Article  Google Scholar 

  • Arnoczky SP, Warren RF (1983) The microvasculature of the meniscus and its response to injury. An experimental study in the dog. Am J Sports Med 11:131–141

    Article  CAS  Google Scholar 

  • Arnoczky SP, Warren RF, Spivak JM (1988) Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg Am 70:1209–1217

    Article  CAS  Google Scholar 

  • Barleon B, Siemeister G, Martiny-Baron G, Weindel K, Herzog C, Marmé D (1997) Vascular endothelial growth factor up-regulates its receptor fms-like tyrosine kinase 1 (FLT-1) and a soluble variant of FLT-1 in human vascular endothelial cells. Cancer Res 57:5421–5425

    CAS  Google Scholar 

  • Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:3336–3343

    Article  CAS  Google Scholar 

  • Becker R, Pufe T, Kulow S, Giessmann N, Neumann W, Mentlein R, Petersen W (2004) Expression of vascular endothelial growth factor during healing of the meniscus in a rabbit model. J Bone Joint Surg Br 86:1082–1087

    Article  CAS  Google Scholar 

  • Beitzel K, McCarthy MB, Cote MP, Chowaniec D, Falcone LM, Falcone JA, Dugdale EM, Deberardino TM, Arciero RA, Mazzocca AD (2012) Rapid isolation of human stem cells (connective progenitor cells) from the distal femur during arthroscopic knee surgery. Arthroscopy 28:74–84

    Article  Google Scholar 

  • Bhargava MM, Attia ET, Murrell GA, Dolan MM, Warren RF, Hannafin JA (1999) The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med 27:636–643

    Article  CAS  Google Scholar 

  • Bian Q, Wang YJ, Liu SF, Li YP (2012) Osteoarthritis: genetic factors, animal models, mechanisms, and therapies. Front Biosci (Elite Ed) 4:74–100

    Article  Google Scholar 

  • Biedert RM (2000) Treatment of intrasubstance meniscal lesions: a randomized prospective study of four different methods. Knee Surg Sports Traumatol Arthrosc 8:104–108

    Article  CAS  Google Scholar 

  • Blair P, Flaumenhaft R (2009) Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 23:177–189

    Article  CAS  Google Scholar 

  • Brunner G, Nguyen H, Gabrilove J, Rifkin DB, Wilson EL (1993) Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Blood 81:631–638

    Article  CAS  Google Scholar 

  • Burks RT, Metcalf MH, Metcalf RW (1997) Fifteen-year follow-up of arthroscopic partial meniscectomy. Arthroscopy 13:673–679

    Article  CAS  Google Scholar 

  • Cannon WD, Vittori JM (1992) The incidence of healing in arthroscopic meniscal repairs in anterior cruciate ligament-reconstructed knees versus stable knees. Am J Sports Med 20:176–181

    Article  Google Scholar 

  • Castillo TN, Pouliot MA, Kim HJ, Dragoo JL (2010) Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med

    Google Scholar 

  • Collier S, Ghosh P (1995) Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthritis Cartilage 3:127–138

    Article  CAS  Google Scholar 

  • Cook JL, Fox DB (2007) A novel bioabsorbable conduit augments healing of avascular meniscal tears in a dog model. Am J Sports Med 35:1877–1887

    Article  Google Scholar 

  • Cucchiarini M, Schetting S, Terwilliger EF, Kohn D, Madry H (2009) rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and alpha-SMA expression in human meniscal lesions. Gene Ther 16:1363–1372

    Article  CAS  Google Scholar 

  • Deschner J, Wypasek E, Ferretti M, Rath B, Anghelina M, Agarwal S (2006) Regulation of RANKL by biomechanical loading in fibrochondrocytes of meniscus. J Biomech 39:1796–1803

    Article  Google Scholar 

  • Dieterich H (1931) Die Regeneration des Meniscus Deutsche Zeitschrift f Chirurgie 230:251–260

    Article  Google Scholar 

  • Driscoll MD, Robin BN, Horie M, Hubert ZT, Sampson HW, Jupiter DC, Tharakan B, Reeve RE (2013) Marrow stimulation improves meniscal healing at early endpoints in a rabbit meniscal injury model. Arthroscopy 29:113–121

    Article  Google Scholar 

  • Dutton AQ, Choong PF, Goh JC, Lee EH, Hui JH (2010) Enhancement of meniscal repair in the avascular zone using mesenchymal stem cells in a porcine model. J Bone Joint Surg Br 92:169–175

    Article  CAS  Google Scholar 

  • Duygulu F, Demirel M, Atalan G, Kaymaz FF, Kocabey Y, Dülgeroğlu TC, Candemir H (2012) Effects of intra-articular administration of autologous bone marrow aspirate on healing of full-thickness meniscal tear: an experimental study on sheep. Acta Orthop Traumatol Turc 46:61–67

    Article  Google Scholar 

  • Englund M, Lohmander LS (2004) Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum 50:2811–2819

    Article  CAS  Google Scholar 

  • Englund M, Roos EM, Roos HP, Lohmander LS (2001) Patient-relevant outcomes fourteen years after meniscectomy: influence of type of meniscal tear and size of resection. Rheumatology (Oxford) 40:631–639

    Article  CAS  Google Scholar 

  • Esparza R, Gortazar AR, Forriol F (2012) Cell study of the three areas of the meniscus: Effect of growth factors in an experimental model in sheep. J Orthop Res 30:1647–1651

    Article  CAS  Google Scholar 

  • Fox JM, Rintz KG, Ferkel RD (1993) Trephination of incomplete meniscal tears. Arthroscopy 9:451–455

    Article  CAS  Google Scholar 

  • Freedman KB, Nho SJ, Cole BJ (2003) Marrow stimulating technique to augment meniscus repair. Arthroscopy 19:794–798

    Article  Google Scholar 

  • Gershuni DH, Skyhar MJ, Danzig LA, Camp J, Hargens AR, Akeson WH (1989) Experimental models to promote healing of tears in the avascular segment of canine knee menisci. J Bone Joint Surg Am 71:1363–1370

    Article  CAS  Google Scholar 

  • Gharaibeh B, Lavasani M, Cummins JH, Huard J (2011) Terminal differentiation is not a major determinant for the success of stem cell therapy - cross-talk between muscle-derived stem cells and host cells. Stem Cell Res Ther 2:31

    Article  Google Scholar 

  • de Girolamo L, Galliera E, Volpi P, Denti M, Dogliotti G, Quaglia A, Cabitza P, Corsi Romanelli MM, Randelli P (2013) Why menisci show higher healing rate when repaired during ACL reconstruction? Growth factors release can be the explanation. Knee Surg Sports Traumatol Arthrosc

    Google Scholar 

  • Hennerbichler A, Moutos FT, Hennerbichler D, Weinberg JB, Guilak F (2007) Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro. Osteoarthritis Cartilage 15:1053–1060

    Article  CAS  Google Scholar 

  • Hennerbichler A, Moutos FT, Hennerbichler D, Weinberg JB, Guilak F (2007) Repair response of the inner and outer regions of the porcine meniscus in vitro. Am J Sports Med 35:754–762

    Article  Google Scholar 

  • Henning CE, Lynch MA, Clark JR (1987) Vascularity for healing of meniscus repairs. Arthroscopy 3:13–18

    Article  CAS  Google Scholar 

  • Henning CE, Lynch MA, Yearout KM, Vequist SW, Stallbaumer RJ, Decker KA (1990) Arthroscopic meniscal repair using an exogenous fibrin clot. Clin Orthop Relat Res 64–72

    Google Scholar 

  • Henning CE, Yearout KM, Vequist SW, Stallbaumer RJ, Decker KA (1991) Use of the fascia sheath coverage and exogenous fibrin clot in the treatment of complex meniscal tears. Am J Sports Med 19:626–631

    Article  CAS  Google Scholar 

  • Hoberg M, Schmidt EL, Tuerk M, Stark V, Aicher WK, Rudert M (2009) Induction of endostatin expression in meniscal fibrochondrocytes by co-culture with endothelial cells. Arch Orthop Trauma Surg 129:1137–1143

    Article  Google Scholar 

  • Huey DJ, Athanasiou KA (2011) Maturational growth of self-assembled, functional menisci as a result of TGF-β1 and enzymatic chondroitinase-ABC stimulation. Biomaterials 32:2052–2058

    Article  CAS  Google Scholar 

  • Imler SM, Doshi AN, Levenston ME (2004) Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage 12:736–744

    Article  Google Scholar 

  • Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T, Sasaki K, Doita M, Kurosaka M (2007) The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng 13:1103–1112

    Article  CAS  Google Scholar 

  • Ishimura M, Ohgushi H, Habata T, Tamai S, Fujisawa Y (1997) Arthroscopic meniscal repair using fibrin glue. Part I: experimental study. Arthroscopy 13:551–557

    Article  CAS  Google Scholar 

  • Ishimura M, Ohgushi H, Habata T, Tamai S, Fujisawa Y (1997) Arthroscopic meniscal repair using fibrin glue. Part II: clinical applications. Arthroscopy 13:558–563

    Article  CAS  Google Scholar 

  • Ishimura M, Tamai S, Fujisawa Y (1991) Arthroscopic meniscal repair with fibrin glue. Arthroscopy 7:177–181

    Article  CAS  Google Scholar 

  • Izuta Y, Ochi M, Adachi N, Deie M, Yamasaki T, Shinomiya R (2005) Meniscal repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats. Knee 12:217–223

    Article  Google Scholar 

  • Järvelä S, Sihvonen R, Sirkeoja H, Järvelä T (2010) All-inside meniscal repair with bioabsorbable meniscal screws or with bioabsorbable meniscus arrows: a prospective, randomized clinical study with 2-year results. Am J Sports Med 38:2211–227

    Article  Google Scholar 

  • Kamimura T, Kimura M (2011) Repair of horizontal meniscal cleavage tears with exogenous fibrin clots. Knee Surg Sports Traumatol Arthrosc 19:1154–1157

    Article  Google Scholar 

  • Kaplan DR, Chao FC, Stiles CD, Antoniades HN, Scher CD (1979) Platelet alpha granules contain a growth factor for fibroblasts. Blood 53:1043–1052

    Article  CAS  Google Scholar 

  • Karey KP, Sirbasku DA (1989) Human platelet-derived mitogens. II. Subcellular localization of insulinlike growth factor I to the alpha-granule and release in response to thrombin. Blood 74:1093–1100

    Article  CAS  Google Scholar 

  • Kobayashi K, Fujimoto E, Deie M, Sumen Y, Ikuta Y, Ochi M (2004) Regional differences in the healing potential of the meniscus-an organ culture model to eliminate the influence of microvasculature and the synovium. Knee 11:271–278

    Article  Google Scholar 

  • Kobuna Y, Shirakura K, Niijima M (1995) Meniscal repair using a flap of synovium. An experimental study in the dog. Am J Knee Surg 8:52–55

    CAS  Google Scholar 

  • Konan S, Haddad FS (2010) Outcomes of meniscal preservation using all-inside meniscus repair devices. Clin Orthop Relat Res 468:1209–1213

    Article  Google Scholar 

  • Kopf S, Birkenfeld F, Becker R, Petersen W, Stärke C, Wruck CJ, Tohidnezhad M, Varoga D, Pufe T (2010) Local treatment of meniscal lesions with vascular endothelial growth factor. J Bone Joint Surg Am 92:2682–2691

    Article  Google Scholar 

  • Kopf S, Stärke C, Becker R (2011) Klinische Ergebnisse nach Meniskusnaht Arthroskopie 24:30–35

    Google Scholar 

  • Kraus T, Heidari N, Švehlík M, Schneider F, Sperl M, Linhart W (2012) Outcome of repaired unstable meniscal tears in children and adolescents. Acta Orthop 83:261–226

    Article  Google Scholar 

  • McNulty AL, Moutos FT, Weinberg JB, Guilak F (2007) Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin-1 or tumor necrosis factor alpha. Arthritis Rheum 56:3033–3043

    Article  CAS  Google Scholar 

  • McNulty AL, Weinberg JB, Guilak F (2009) Inhibition of matrix metalloproteinases enhances in vitro repair of the meniscus. Clin Orthop Relat Res 467:1557–1567

    Article  Google Scholar 

  • Mishra A, Pavelko T (2006) Treatment of chronic elbow tendinosis with buffered platelet-rich plasma. Am J Sports Med 34:1774–1778

    Article  Google Scholar 

  • Möhle R, Green D, Moore MA, Nachman RL, Rafii S (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci U S A 94:663–668

    Article  Google Scholar 

  • Nakhostine M, Gershuni DH, Anderson R, Danzig LA, Weiner GM (1990) Effects of abrasion therapy on tears in the avascular region of sheep menisci. Arthroscopy 6:280–287

    Article  CAS  Google Scholar 

  • Narita A, Takahara M, Ogino T, Fukushima S, Kimura Y, Tabata Y (2009) Effect of gelatin hydrogel incorporating fibroblast growth factor 2 on human meniscal cells in an organ culture model. Knee 16:285–289

    Article  Google Scholar 

  • Narita A, Takahara M, Sato D, Ogino T, Fukushima S, Kimura Y, Tabata Y (2012) Biodegradable gelatin hydrogels incorporating fibroblast growth factor 2 promote healing of horizontal tears in rabbit meniscus. Arthroscopy 28:255–263

    Article  Google Scholar 

  • Ochi M, Mochizuki Y, Deie M, Ikuta Y (1996) Augmented meniscal healing with free synovial autografts: an organ culture model. Arch Orthop Trauma Surg 115:123–126

    Article  CAS  Google Scholar 

  • Ochi M, Uchio Y, Okuda K, Shu N, Yamaguchi H, Sakai Y (2001) Expression of cytokines after meniscal rasping to promote meniscal healing. Arthroscopy 17:724–731

    Article  CAS  Google Scholar 

  • Okuda K, Ochi M, Shu N, Uchio Y (1999) Meniscal rasping for repair of meniscal tear in the avascular zone. Arthroscopy 15:281–286

    Article  CAS  Google Scholar 

  • O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA (1999) Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274:29568-29571

    Article  Google Scholar 

  • Pabbruwe MB, Kafienah W, Tarlton JF, Mistry S, Fox DJ, Hollander AP (2010) Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant. Biomaterials 31:2583–2591

    Article  CAS  Google Scholar 

  • Pangborn CA, Athanasiou KA (2005) Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng 11:1141–1148

    Article  CAS  Google Scholar 

  • Peretti GM, Gill TJ, Xu JW, Randolph MA, Morse KR, Zaleske DJ (2004) Cell-based therapy for meniscal repair: a large animal study. Am J Sports Med 32:146–158

    Article  Google Scholar 

  • Piontek T, Ciemniewska-Gorzela K, Szulc A, Słomczykowski M, Jakob R (2012) All-arthroscopic technique of biological meniscal tear therapy with collagen matrix. Pol Orthop Traumatol 77:39–45

    Google Scholar 

  • Port J, Jackson DW, Lee TQ, Simon TM (1996) Meniscal repair supplemented with exogenous fibrin clot and autogenous cultured marrow cells in the goat model. Am J Sports Med 24:547–555

    Article  CAS  Google Scholar 

  • Ra HJ, Ha JK, Jang SH, Lee DW, Kim JG (2013) Arthroscopic inside-out repair of complete radial tears of the meniscus with a fibrin clot. Knee Surg Sports Traumatol Arthrosc 21:2126–2130

    Article  Google Scholar 

  • Riera KM, Rothfusz NE, Wilusz RE, Weinberg JB, Guilak F, McNulty AL (2011) Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration. Arthritis Res Ther 13:R187

    Article  CAS  Google Scholar 

  • Ritchie JR, Miller MD, Bents RT, Smith DK (1998) Meniscal repair in the goat model. The use of healing adjuncts on central tears and the role of magnetic resonance arthrography in repair evaluation. Am J Sports Med 26:278–284

    Article  CAS  Google Scholar 

  • Roos H, Laurén M, Adalberth T, Roos EM, Jonsson K, Lohmander LS (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41:687–693

    Article  CAS  Google Scholar 

  • Ruggeri ZM, Mendolicchio GL (2007) Adhesion mechanisms in platelet function. Circ Res 100:1673–1685

    Article  CAS  Google Scholar 

  • Ruiz-Ibán MA, Díaz-Heredia J, García-Gómez I, Gonzalez-Lizán F, Elías-Martín E, Abraira V (2011) The effect of the addition of adipose-derived mesenchymal stem cells to a meniscal repair in the avascular zone: an experimental study in rabbits. Arthroscopy 27:1688–1696

    Article  Google Scholar 

  • Sarimo J, Rantanen J, Tarvainen T, Härkönen M, Orava S (2005) Evaluation of the second-generation meniscus arrow in the fixation of bucket-handle tears in the vascular area of the meniscus. A prospective study of 20 patients with a mean follow-up of 26 months. Knee Surg Sports Traumatol Arthrosc 13:614–618

    Article  Google Scholar 

  • Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG (2003) TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114:171–180

    Article  CAS  Google Scholar 

  • Shirakura K, Niijima M, Kobuna Y, Kizuki S (1997) Free synovium promotes meniscal healing. Synovium, muscle and synthetic mesh compared in dogs. Acta Orthop Scand 68:51–54

    Article  CAS  Google Scholar 

  • Spindler KP, Mayes CE, Miller RR, Imro AK, Davidson JM (1995) Regional mitogenic response of the meniscus to platelet-derived growth factor (PDGF-AB). J Orthop Res 13:201–207

    Article  CAS  Google Scholar 

  • Staerke C, Kopf S, Becker R (2008) The extent of laceration of circumferential fibers with suture repair of the knee meniscus. Winner of the AGA-DonJoy Award 2006. Arch Orthop Trauma Surg 128:525–530

    Article  Google Scholar 

  • Stärke C, Kopf S, Petersen W, Becker R (2009) Meniscal repair. Arthroscopy 25:1033–1044

    Article  Google Scholar 

  • Stein T, Mehling AP, Welsch F, von Eisenhart-Rothe R, Jäger A (2010) Long-term outcome after arthroscopic meniscal repair versus arthroscopic partial meniscectomy for traumatic meniscal tears. Am J Sports Med 38:1542–1548

    Article  Google Scholar 

  • Steinert AF, Palmer GD, Capito R, Hofstaetter JG, Pilapil C, Ghivizzani SC, Spector M, Evans CH (2007) Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-beta 1 complementary deoxyribonucleic acid. Tissue Eng 13:2227–2237

    Article  CAS  Google Scholar 

  • Stellos K, Kopf S, Paul A, Marquardt JU, Gawaz M, Huard J, Langer HF (2010) Platelets in regeneration. Semin Thromb Hemost 36:175–184

    Article  CAS  Google Scholar 

  • Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103:1237–1241

    Article  CAS  Google Scholar 

  • Tengrootenhuysen M, Meermans G, Pittoors K, van Riet R, Victor J (2011) Long-term outcome after meniscal repair. Knee Surg Sports Traumatol Arthrosc 19:236–241

    Article  Google Scholar 

  • Tenuta JJ, Arciero RA (1994) Arthroscopic evaluation of meniscal repairs. Factors that effect healing. Am J Sports Med 22:797–802

    Article  CAS  Google Scholar 

  • Tumia NS, Johnstone AJ (2004) Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro. Am J Sports Med 32:915–920

    Article  Google Scholar 

  • Tumia NS, Johnstone AJ (2004) Regional regenerative potential of meniscal cartilage exposed to recombinant insulin-like growth factor-I in vitro. J Bone Joint Surg Br 86:1077–1081

    Article  CAS  Google Scholar 

  • Tumia NS, Johnstone AJ (2009) Platelet derived growth factor-AB enhances knee meniscal cell activity in vitro. Knee 16:73–76

    Article  Google Scholar 

  • Uchio Y, Ochi M, Adachi N, Kawasaki K, Iwasa J (2003) Results of rasping of meniscal tears with and without anterior cruciate ligament injury as evaluated by second-look arthroscopy. Arthroscopy 19:463–469

    Article  Google Scholar 

  • van Trommel MF, Simonian PT, Potter HG, Wickiewicz TL (1998) Arthroscopic meniscal repair with fibrin clot of complete radial tears of the lateral meniscus in the avascular zone. Arthroscopy 14:360–365

    Article  Google Scholar 

  • Webber RJ, Harris MG, Hough AJ (1985) Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J Orthop Res 3:36–42

    Article  CAS  Google Scholar 

  • Webber RJ, York JL, Vanderschilden JL, Hough AJ (1989) An organ culture model for assaying wound repair of the fibrocartilaginous knee joint meniscus. Am J Sports Med 17:393–400

    Article  CAS  Google Scholar 

  • Weinand C, Peretti GM, Adams SB, Bonassar LJ, Randolph MA, Gill TJ (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34:1779–1789

    Article  Google Scholar 

  • Weinand C, Peretti GM, Adams SB, Randolph MA, Savvidis E, Gill TJ (2006) Healing potential of transplanted allogeneic chondrocytes of three different sources in lesions of the avascular zone of the meniscus: a pilot study. Arch Orthop Trauma Surg 126:599–605

    Article  Google Scholar 

  • Weinand C, Xu JW, Peretti GM, Bonassar LJ, Gill TJ (2009) Conditions affecting cell seeding onto three-dimensional scaffolds for cellular-based biodegradable implants. J Biomed Mater Res B Appl Biomater

    Google Scholar 

  • Wilusz RE, Weinberg JB, Guilak F, McNulty AL (2008) Inhibition of integrative repair of the meniscus following acute exposure to interleukin-1 in vitro. J Orthop Res 26:504–512

    Article  CAS  Google Scholar 

  • Zellner J, Hierl K, Mueller M, Pfeifer C, Berner A, Dienstknecht T, Krutsch W, Geis S, Gehmert S, Kujat R, Dendorfer S, Prantl L, Nerlich M, Angele P (2013) Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater 101:1133–1142

    Article  Google Scholar 

  • Zellner J, Mueller M, Berner A, Dienstknecht T, Kujat R, Nerlich M, Hennemann B, Koller M, Prantl L, Angele M, Angele P (2010) Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A 94:1150–1161

    Google Scholar 

  • Zhang Z, Arnold JA (1996) Trephination and suturing of avascular meniscal tears: a clinical study of the trephination procedure. Arthroscopy 12:726–731

    Article  CAS  Google Scholar 

  • Zhang Z, Arnold JA, Williams T, McCann B (1995) Repairs by trephination and suturing of longitudinal injuries in the avascular area of the meniscus in goats. Am J Sports Med 23:35–41

    Article  CAS  Google Scholar 

  • Zhang ZN, Tu KY, Xu YK, Zhang WM, Liu ZT, Ou SH (1988) Treatment of longitudinal injuries in avascular area of meniscus in dogs by trephination. Arthroscopy 4:151–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kopf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kopf, S., Becker, R. (2015). Role of Biologicals in Meniscus Surgery. In: Doral, M.N., Karlsson, J. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36569-0_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36569-0_77

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36568-3

  • Online ISBN: 978-3-642-36569-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics