Skip to main content

Epidemiology and Anatomy of Stress Fractures

  • Reference work entry
  • First Online:
Sports Injuries

Abstract

Stress fractures affect military trainees and athletes. They were first described in soldiers in 1855 and in sportsmen in the early twentieth century. These populations differ significantly in their training programs and environment. This leads to considerable epidemiological differences. Gender and type of activity also affect the epidemiology in the groups. Data from the military are usually more reproducible than data from athletes because of the uniformity of training regimens in the military compared to athletes (mainly sports that include running) whose training tends to be more individualistic. The anatomical site of the stress fracture is influenced by the type of training, with classical march drills causing more foot injuries, and long distance marching and running causing more long bone stress fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida SA, Trone DW, Leone DM et al (1999) Gender differences in musculoskeletal injury rates: a function of symptom reporting? Med Sci Sports Exerc 31:1807–1812

    Article  CAS  Google Scholar 

  • Asal (1936) Überlastungsschäden am knochensystem bei soldaten. Arch für Klin Chir 186:511–522

    Google Scholar 

  • Barrow GW, Saha S (1988) Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med 16:209–216

    Article  CAS  Google Scholar 

  • Beck TJ, Ruff CB, Mourtada FA et al (1996) Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits. J Bone Miner Res 11:645–653

    Article  CAS  Google Scholar 

  • Beck TJ, Ruff CB, Shaffer RA et al (2000) Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone 27:437–444

    Article  CAS  Google Scholar 

  • Bennell KL, Malcolm SA, Thomas SA et al (1996) The incidence and distribution of stress fractures in competitive track and field athletes. A twelve-month prospective study. Am J Sports Med 24:211–217

    Article  CAS  Google Scholar 

  • Bennell KL, Malcolm SA, Brukner PD et al (1998) A 12-month prospective study of the relationship between stress fractures and bone turnover in athletes. Calcif Tissue Int 63:80–85

    Article  CAS  Google Scholar 

  • Bovens AM, Janssen GM, Vermeer HG et al (1989) Occurrence of running injuries in adults following a supervised training program. Int J Sports Med 10(Suppl 3):S186–S190

    Article  Google Scholar 

  • Breithaupt M (1855) Zur pathologie des menschlichen fusses. Med Ztg 24:169–177

    Google Scholar 

  • Brudvig TJ, Gudger TD, Obermeyer L (1983) Stress fractures in 295 trainees: a one-year study of incidence as related to age, sex, and race. Mil Med 148:666–667

    Article  CAS  Google Scholar 

  • Brukner P, Bradshaw C, Khan KM et al (1996) Stress fractures: a review of 180 cases. Clin J Sport Med 6:85–89

    Article  CAS  Google Scholar 

  • Brunet ME, Cook SD, Brinker MR et al (1990) A survey of running injuries in 1505 competitive and recreational runners. J Sports Med Phys Fitness 30:307–315

    CAS  Google Scholar 

  • Burrows H (1940) Spontaneous fracture of the apparently normal fibula in its lowest third. Br J Surg 28:82

    Article  Google Scholar 

  • Chen YT, Tenforde AS, Fredericson M (2013) Update on stress fractures in female athletes: epidemiology, treatment, and prevention. Curr Rev Musculoskelet Med 6:173–181

    Article  Google Scholar 

  • Constantini N, Finestone AS, Hod N et al (2010) Equipment modification is associated with fewer stress fractures in female Israel border police recruits. Mil Med 175:799–804

    Article  Google Scholar 

  • Cosman F, Ruffing J, Zion M et al (2013) Determinants of stress fracture risk in United States Military Academy cadets. Bone 55:359–366

    Article  Google Scholar 

  • Dixon M, Fricker P (1993) Injuries to elite gymnasts over 10 yr. Med Sci Sports Exerc 25:1322–1329

    Article  CAS  Google Scholar 

  • Ekstrand J, Torstveit MK (2012) Stress fractures in elite male football players. Scand J Med Sci Sports 22:754–758

    Article  Google Scholar 

  • Etzion-Daniel Y, Constantini N, Finestone AS et al (2008) Nutrition consumption of female combat recruits in army basic training. Med Sci Sports Exerc 40:S677–S684

    Article  CAS  Google Scholar 

  • Finestone A, Milgrom C (2008) How stress fracture incidence was lowered in the Israeli army: a 25-yr struggle. Med Sci Sports Exerc 40:S623–S629

    Article  Google Scholar 

  • Finestone A, Shlamkovitch N, Eldad A et al (1991) Risk factors for stress fractures among Israeli infantry recruits. Mil Med 156:528–530

    Article  CAS  Google Scholar 

  • Finestone A, Giladi M, Elad H et al (1999) Prevention of stress fractures using custom biomechanical shoe orthoses. Clin Orthop Relat Res 360:182–190

    Article  Google Scholar 

  • Finestone A, Milgrom C, Eldad A et al (2000) Stress fractures–contribution of the Israel Defense Forces to understanding their mechanisms, their prevention and treatment. Harefuah 138:789–795

    CAS  Google Scholar 

  • Finestone A, Milgrom C, Evans R et al (2008) Overuse injuries in female infantry recruits during low-intensity basic training. Med Sci Sports Exerc 40:S630–S635

    Article  Google Scholar 

  • Finestone A, Milgrom C, Wolf O et al (2011) Epidemiology of metatarsal stress fractures versus tibial and femoral stress fractures during elite training. Foot Ankle Int 32:16–20

    Article  Google Scholar 

  • Friedl KE, Nuovo JA, Patience TH et al (1992) Factors associated with stress fracture in young army women: indications for further research. Mil Med 157:334–338

    Article  CAS  Google Scholar 

  • Frusztajer NT, Dhuper S, Warren MP et al (1990) Nutrition and the incidence of stress fractures in ballet dancers. Am J Clin Nutr 51:779–783

    Article  CAS  Google Scholar 

  • Gam A, Goldstein L, Karmon Y et al (2005) Comparison of stress fractures of male and female recruits during basic training in the Israeli anti-aircraft forces. Mil Med 170:710–712

    Article  Google Scholar 

  • Giladi M, Ahronson Z, Stein M et al (1985) Unusual distribution and onset of stress fractures in soldiers. Clin Orthop Relat Res 192:142–146

    Article  Google Scholar 

  • Giladi M, Milgrom C, Kashtan H et al (1986) Recurrent stress fractures in military recruits. One-year follow-up of 66 recruits. J Bone Joint Surg (Br) 68:439–441

    Article  CAS  Google Scholar 

  • Givon U, Friedman E, Reiner A et al (2000) Stress fractures in the Israeli defense forces from 1995 to 1996. Clin Orthop Relat Res 373:227–232

    Article  Google Scholar 

  • Goldberg B, Pecora C (1994) Stress fractures: a risk of increased training in freshmen. Phys Sportsmed 22:68–78

    Article  CAS  Google Scholar 

  • Hallel T, Amit S, Segal D (1976) Fatigue fractures of tibial and femoral shaft in soldiers. Clin Orthop Relat Res 118:35–43

    Google Scholar 

  • Hartley JB (1943) “Stress” or “fatigue” fractures of bone. Br J Radiol 16:255–262

    Article  Google Scholar 

  • Hod N, Ashkenazi I, Levi Y et al (2006) Characteristics of skeletal stress fractures in female military recruits of the Israel defense forces on bone scintigraphy. Clin Nucl Med 31:742–749

    Article  Google Scholar 

  • Hulkko A, Orava S (1987) Stress fractures in athletes. Int J Sports Med 8:221–226

    Article  CAS  Google Scholar 

  • Hullinger CW (1944) Insufficiency fracture of the calcaneus similar to march fracture of the metatarsal. J Bone Joint Surg 26:751–757

    Google Scholar 

  • Jansen M (1926) March foot. J Bone Joint Surg 8:262–272

    Google Scholar 

  • Johnson AW, Weiss CB Jr, Wheeler DL (1994) Stress fractures of the femoral shaft in athletes–more common than expected. A new clinical test. Am J Sports Med 22:248–256

    Article  CAS  Google Scholar 

  • Jones BH, Harris JM, Vinh TN et al (1989) Exercise-induced stress fractures and stress reactions of bone: epidemiology, etiology, and classification. Exerc Sport Sci Rev 17:379–422

    CAS  Google Scholar 

  • Jones BH, Bovee MW, Harris JM 3rd et al (1993a) Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am J Sports Med 21:705–710

    Article  CAS  Google Scholar 

  • Jones BH, Cowan DN, Tomlinson JP et al (1993b) Epidemiology of injuries associated with physical training among young men in the army. Med Sci Sports Exerc 25:197–203

    Article  CAS  Google Scholar 

  • Kadel NJ, Teitz CC, Kronmal RA (1992) Stress fractures in ballet dancers. Am J Sports Med 20:445–449

    Article  CAS  Google Scholar 

  • Knapik J, Montain SJ, McGraw S et al (2012) Stress fracture risk factors in basic combat training. Int J Sports Med 33:940–946

    Article  CAS  Google Scholar 

  • Koplan JP, Powell KE, Sikes RK et al (1982) An epidemiologic study of the benefits and risks of running. JAMA 248:3118–3121

    Article  CAS  Google Scholar 

  • Koplan JP, Rothenberg RB, Jones EL (1995) The natural history of exercise: a 10-yr follow-up of a cohort of runners. Med Sci Sports Exerc 27:1180–1184

    Article  CAS  Google Scholar 

  • Korpelainen R, Orava S, Karpakka J et al (2001) Risk factors for recurrent stress fractures in athletes. Am J Sports Med 29:304–310

    Article  CAS  Google Scholar 

  • Lappe JM, Stegman MR, Recker RR (2001) The impact of lifestyle factors on stress fractures in female Army recruits. Osteoporos Int 12:35–42

    Article  CAS  Google Scholar 

  • Leabhart JW (1959) Stress fractures of the calcaneus. J Bone Joint Surg Am 41-A:1285–1290

    Article  CAS  Google Scholar 

  • Leveton A (1946) March (fatigue) fractures of the long bones of the lower extremity and pelvis. Am J Surg 71:222–232

    Article  CAS  Google Scholar 

  • Linenger JM, Shwayhat AF (1992) Epidemiology of podiatric injuries in US Marine recruits undergoing basic training. J Am Podiatr Med Assoc 82:269–271

    Article  CAS  Google Scholar 

  • Lloyd T, Triantafyllou SJ, Baker ER et al (1986) Women athletes with menstrual irregularity have increased musculoskeletal injuries. Med Sci Sports Exerc 18:374–379

    Article  CAS  Google Scholar 

  • Macleod MA, Houston AS, Sanders L et al (1999) Incidence of trauma related stress fractures and shin splints in male and female army recruits: retrospective case study. BMJ 318:29

    Article  CAS  Google Scholar 

  • McBryde AM Jr (1985) Stress fractures in runners. Clin Sports Med 4:737–752

    Article  Google Scholar 

  • Meyerding H, Pollock G (1938) March fracture. Surg Gynecol Obstet 67:234–242

    Google Scholar 

  • Milgrom C (1989) The Israeli elite infantry recruit: a model for understanding the biomechanics of stress fractures. J R Coll Surg Edinb 34:S18–S22

    CAS  Google Scholar 

  • Milgrom C, Chisin R, Giladi M et al (1985a) Multiple stress fractures. A longitudinal study of a soldier with 13 lesions. Clin Orthop Relat Res 192:174–179

    Article  Google Scholar 

  • Milgrom C, Giladi M, Stein M et al (1985b) Stress fractures in military recruits. A prospective study showing an unusually high incidence. J Bone Joint Surg (Br) 67:732–735

    Article  CAS  Google Scholar 

  • Milgrom C, Finestone A, Shlamkovitch N et al (1994) Youth is a risk factor for stress fracture. A study of 783 infantry recruits. J Bone Joint Surg (Br) 76:20–22

    Article  CAS  Google Scholar 

  • Milgrom C, Finestone A, Shlamkovitch N et al (1995) Stress fracture treatment. Orthop Int Ed 3:363–367

    Google Scholar 

  • Milgrom C, Finestone A, Sharkey N et al (2002) Metatarsal strains are sufficient to cause fatigue fracture during cyclic overloading. Foot Ankle Int 23:230–235

    Article  CAS  Google Scholar 

  • Nattiv A, Puffer JC, Green GA (1997) Lifestyles and health risks of collegiate athletes: a multi-center study. Clin J Sport Med 7:262–272

    Article  CAS  Google Scholar 

  • Orava S, Jormakka E, Hulkko A (1981) Stress fractures in young athletes. Arch Orthop Trauma Surg 98:271–274

    Article  CAS  Google Scholar 

  • Pecina M, Bojanic I, Dubravcic S (1990) Stress fractures in figure skaters. Am J Sports Med 18:277–279

    Article  CAS  Google Scholar 

  • Protzman RR, Griffis CG (1977) Stress fractures in men and women undergoing military training. J Bone Joint Surg Am 59:825

    Article  CAS  Google Scholar 

  • Provost RA, Morris JM (1969) Fatigue fracture of the femoral shaft. J Bone Joint Surg Am 51:487–498

    Article  CAS  Google Scholar 

  • Reinker KA, Ozburne S (1979) A comparison of male and female orthopaedic pathology in basic training. Mil Med 144:532–536

    Article  CAS  Google Scholar 

  • Reis JP, Trone DW, Macera CA et al (2007) Factors associated with discharge during marine corps basic training. Mil Med 172:936–941

    Article  Google Scholar 

  • Ross RA, Allsopp A (2002) Stress fractures in Royal Marines recruits. Mil Med 167:560–565

    Article  Google Scholar 

  • Rudzki SJ (1997) Injuries in Australian Army recruits. Part II: location and cause of injuries seen in recruits. Mil Med 162:477–480

    Article  CAS  Google Scholar 

  • Sahi T (1984) Stress fractures. Revue internationale des services de sante des armees de terre, de mer et de l’air 57:311–313

    Google Scholar 

  • Scheller F (1939) Überlatungsschäden am Knochergerüst junger männer. Med Welt 13:1333–1336

    Google Scholar 

  • Scully TJ, Besterman G (1982) Stress fracture–a preventable training injury. Mil Med 147:285–287

    Article  CAS  Google Scholar 

  • Shaffer R (2001) Incidence and prevalance of stress fractures in military and athletic populations. In: Burr D, Milgrom C (eds) Musculoskeletal fatigue and stress fractures. CRC Press LLC, Boca Raton, pp 1–14

    Google Scholar 

  • Stechow M (1897) Fussödum und röntgenstrahlen. Deutsch Mil Aerztl Zeitg 26:465–471

    Google Scholar 

  • Warren MP, Brooks-Gunn J, Hamilton LH et al (1986) Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med 314:1348–1353

    Article  CAS  Google Scholar 

  • Wilmore JH (1991) Eating and weight disorders in the female athlete. Int J Sport Nutr 1:104–117

    Article  CAS  Google Scholar 

  • Zwas ST, Elkanovitch R, Frank G (1987) Interpretation and classification of bone scintigraphic findings in stress fractures. J Nucl Med 28:452–457

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon S. Finestone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Finestone, A.S., Milgrom, C. (2015). Epidemiology and Anatomy of Stress Fractures. In: Doral, M.N., Karlsson, J. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36569-0_283

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36569-0_283

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36568-3

  • Online ISBN: 978-3-642-36569-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics