Skip to main content

Direct Trajectory Optimization of Rigid Body Dynamical Systems through Contact

  • Conference paper

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 86))

Abstract

Direct methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Most state-of-the-art techniques treat the discontinuous dynamics of contact as discrete modes and restrict the search for a complete path to a specified sequence through these modes. Here we present a novel method for trajectory planning through contact that eliminates the requirement for an a priori mode ordering. Motivated by the formulation of multi-contact dynamics as a Linear Complementarity Problem (LCP) for forward simulation, the proposed algorithm leverages Sequential Quadratic Programming (SQP) to naturally resolve contact constraint forces while simultaneously optimizing a trajectory and satisfying nonlinear complementarity constraints. The method scales well to high dimensional systems with large numbers of possible modes.We demonstrate the approach using three increasingly complex systems: rotating a pinned object with a finger, planar walking with the Spring Flamingo robot, and high speed bipedal running on the FastRunner platform.

An Erratum for this chapter can be found at http://dx.doi.org/978-3-642-36279-8_38

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-36279-8_38

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dynamics 14(3), 231–247 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM Advances in Design and Control. Society for Industrial and Applied Mathematics (2001)

    Google Scholar 

  3. Byl, K., Tedrake, R.: Approximate optimal control of the compass gait on rough terrain. In: Proc. IEEE International Conference on Robotics and Automation (ICRA) (2008)

    Google Scholar 

  4. Chen, C., Mangasarian, O.L.: A class of smoothing functions for nonlinear and mixed complementarity problems. Computational Optimization and Applications 5(2), 97–138 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cotton, S., Olaru, I., Bellman, M., van der Ven, T., Godowski, J., Pratt, J.: Fastrunner: A fast, efficient and robust bipedal robot. concept and planar simulation. In: Proceeding of the IEEE International Conference on Robotics and Automation (ICRA) (2012)

    Google Scholar 

  6. Fischer, A.: A special newton-type optimization method. Optimization 24(3-4), 269–284 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization. SIAM Review 47(1), 99–131 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gill, P.E., Murray, W., Saunders, M.A.: User’s Guide for SNOPT Version 7: Software for Large -Scale Nonlinear Programming, February 12 (2006)

    Google Scholar 

  9. Hargraves, C.R., Paris, S.W.: Direct Trajectory Optimization Using Nonlinear Programming and Collocation. J. Guidance 10(4), 338–342 (1987)

    Article  MATH  Google Scholar 

  10. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2149–2154. IEEE (2004)

    Google Scholar 

  11. Miller, A.T., Christensen, H.I.: Implementation of multi-rigid-body dynamics within a robotic grasping simulator. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2003), vol. 2, pp. 2262–2268. IEEE (2003)

    Google Scholar 

  12. Pratt, J.: Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots. PhD thesis, Computer Science Department, Massachusetts Institute of Technology (2000)

    Google Scholar 

  13. Pratt, J., Pratt, G.: Intuitive Control of a Planar Bipedal Walking Robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (1998)

    Google Scholar 

  14. Schultz, G., Mombaur, K.: Modeling and Optimal Control of Human-Like Running. IEEE/ASME Transactions on Mechatronics 15(5), 783–792 (2010)

    Article  Google Scholar 

  15. Shkolnik, A., Levashov, M., Manchester, I.R., Tedrake, R.: Bounding on rough terrain with the littledog robot. The International Journal of Robotics Research (IJRR) 30(2), 192–215 (2011)

    Article  Google Scholar 

  16. Srinivasan, M., Ruina, A.: Computer optimization of a minimal biped model discovers walking and running. Nature 439, 72–75 (2006)

    Article  Google Scholar 

  17. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. International Journal for Numerical Methods in Engineering 39(15), 2673–2691 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tassa, Y., Todorov, E.: Stochastic complementarity for local control of discontinuous dynamics. In: Proceedings of Robotics: Science and Systems (RSS). Citeseer (2010)

    Google Scholar 

  19. Wampler, K., Popovic, Z.: Optimal gait and form for animal locomotion. ACM Transactions on Graphics (TOG) 28(3), 60 (2009)

    Article  Google Scholar 

  20. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Posa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Posa, M., Tedrake, R. (2013). Direct Trajectory Optimization of Rigid Body Dynamical Systems through Contact. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36279-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36279-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36278-1

  • Online ISBN: 978-3-642-36279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics