Skip to main content

Optical Absorption of Polymers

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Transparent polymer

Definition

The intrinsic polymer optical absorption basically includes IR absorption and its higher harmonics as well as UV absorption, i.e., electronic transitional absorption.

Introduction

Photonics and optoelectronics systems are widely developed especially in the field of optical telecommunication, office automation, factory automation, and audiovisual signal processing. Transparent polymers which can be used to transmit, divide, couple, and process optical signals have many advantages over inorganic materials such as glasses, semiconductors, dielectrics, and inorganic optical elements. They have attracted much attention because they are easy to fabricate, their refractive index are easy to control, they are easy to handle, and they are easy to process. Polymeric passive components are low in manufacturing cost.

Polymers for optical application should be as transparent as possible, and therefore, they should be low in absorption loss and scattering...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kaino T (1992) Chapter 1: Polymer optical fibers. In: Hornak LA (ed) Polymers for lightwave and integrated optics. Mercel Dekker, New York

    Google Scholar 

  2. Kaino T (1985) Absorption losses of low loss plastic optical fibers. Jpn J Appl Phys 24:1661

    Article  CAS  Google Scholar 

  3. Ellis JW (1929) Heat of linkage of C-H and N-H bonds from vibration spectra. Phys Rev 33:27

    Article  CAS  Google Scholar 

  4. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324

    Article  CAS  Google Scholar 

  5. Hale GH, Querry MR (1973) Optical constants of water in the 200 nm to 200 mm wavelength region. Appl Opt 12:555–563

    Article  CAS  Google Scholar 

  6. Reidenbach H-D, Bodem F (1975) Investigation of various transmission properties and launching techniques of plastic optical fibres suitable for transmission of high optical powers. Opt Quantum Electron 7:355

    Article  CAS  Google Scholar 

  7. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York

    Google Scholar 

  8. Fujiki M, Kaino T, Oikawa S (1983) Light scattering study of pure Poly(Methyl Methacrylate). Polym J 15:693

    Article  CAS  Google Scholar 

  9. Kaino T, Fujiki M, Jinguji K (1984) Preparation of plastic optical fibers. Rev Electr Commun Lab 32:478

    CAS  Google Scholar 

  10. Kaino T, Fujiki M, Nara S (1981) Low loss polystyrene-core optical fibers. J Appl Phys 52:7061

    Article  CAS  Google Scholar 

  11. Kaino T (1987) Preparation of plastic optical fibers for near-infrared transmission. J Polym Sci Part A Polym Chem Ed 25:37–46

    Article  CAS  Google Scholar 

  12. Kaino T, Jinguji K, Nara S (1983) Low loss Poly(Methylmethacrylate-d8) core optical fibers. Appl Phys Lett 42:567

    Article  CAS  Google Scholar 

  13. Kaino T (1989) Recent development in plastic optical fibers. In: Saegusa T, Higashimura T, Abe A (eds) Frontiers of macromolecular science. Blackwell Science Publications, London, p 475

    Google Scholar 

  14. Groh W (1988) Overtone absorption in macromolecules for polymer optical fibers. Makromol Chem 189:2861

    Article  CAS  Google Scholar 

  15. Kaino T (1986) Plastic optical fibers for near-infrared transmission. Appl Phys Lett 48:757

    Article  CAS  Google Scholar 

  16. Kaino T (1985) Influence of water absorption on plastic optical fibers. Appl Opt 24:4192

    Article  CAS  Google Scholar 

  17. Koike Y, Nihei E, Tanio N, Ohtsuka Y (1990) Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymers. Appl Opt 29:2686

    Article  CAS  Google Scholar 

  18. Aoyagi T (1987) Recent development in plastic optical fibers and applications for automotive use. In: Proceedings of SPIE 840, p 10

    Google Scholar 

  19. Tanaka A, Sawada H, TakoshimaT, Wakatsuki N (1987) New plastic optical fiber with polycarbonate core and fluorescence-doped fiber for high temperature. In: Proceedings of SPIE 840, p 19

    Google Scholar 

  20. Sasayama T, Taketani N. Asano H (1989) Optical multiplexed transmission system using high temperature polymer fiber. In: International congress and exhibition, SAE technical paper series 890200/1-7, 27 Feb–3 Mar 1989

    Google Scholar 

  21. Matsuura T, Ando S, Sasaki A, Yamamoto F (1994) Polyimides derived from 2,2′-Bis(trifluoromethyl)-4,4′diaminobiphenyl. 4. Macromolecules 27:6665

    Article  CAS  Google Scholar 

  22. Matsuura T, Ando S, Matsui S, Sasaki S, Yamamoto F (1993) Heat-resistant single-mode optical waveguides using fluorinated polyimides. Electron Lett 29:2107

    Article  CAS  Google Scholar 

  23. Weidman TW, Kwoch EW, Bianconi PA, Hornak LA (1992) Chapter 7: Synthesis and applications of polysilyne thin film optical waveguide media. In: Hornak LA (ed) Polymers for lightwave and integrated optics. Mercel Dekker, New York

    Google Scholar 

  24. Usui M, Imamura S, Sugawara S, Hayashida S, Sato H, Hikita M, Izawa T (1994) Low-loss polymeric optical waveguide with high thermal stability. Electron Lett 30:958

    Article  CAS  Google Scholar 

  25. Kaino T (1985) Ultimate loss limit estimation of plastic optical fibers. Kobunshi Ronbunshu 42:257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikuni Kaino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kaino, T. (2014). Optical Absorption of Polymers. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_118-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_118-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics