Skip to main content

Passive Seismic Interferometry for Subsurface Imaging

  • Living reference work entry
  • First Online:
Encyclopedia of Earthquake Engineering

Synonyms

Ambient noise; Body waves; Cross-correlation; Green’s function retrieval; Reflection imaging; Reflections; Seismic interferometry; Teleseismic arrivals

Introduction

Seismic interferometry is a method that allows the retrieval of the seismic response at one receiver from a virtual source at the position of another receiver. The method was first proposed in the seismic exploration community by Claerbout (1968) for a horizontally layered subsurface. The author showed that by autocorrelating the transmission response recorded at a receiver at the Earth’s surface from noise sources in the subsurface, one would retrieve the reflection response at this receiver from a virtual source also at that location. In the following decades, the applications of this idea were rare (Scherbaum 1987; Duvall et al. 1993; Daneshvar et al. 1995). But from the turn of the century, the fortunes changed and the method rapidly gained in popularity. This happened in the seismological community, due to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe S, Kurashimo E, Sato H, Hirata N, Iwasaki T, Kawanaka T (2007) Interferometric seismic imaging of crustal structure using scattered teleseismic waves. Geophys Res Lett 34:L19305. doi:10.1029/2007GL030633

    Article  Google Scholar 

  • Almagro Vidal C, Draganov D, van der Neut J, Drijkoningen G, Wapenaar K (2014) Retrieval of reflections from ambient-noise field data using illumination diagnosis. Geophys J Int 198:1572–1584. doi:10.1093/gji/ggu164

    Article  Google Scholar 

  • Campillo M, Paul A (2003) Long-range correlations in the diffuse seismic coda. Science 299:547–549

    Article  Google Scholar 

  • Claerbout JF (1968) Synthesis of a layered medium from its acoustic transmission response. Geophysics 33:264–269

    Article  Google Scholar 

  • Daneshvar MR, Clarence CS, Savage MK (1995) Passive seismic imaging using microearthquakes. Geophysics 60:1178–1186

    Article  Google Scholar 

  • Draganov D, Campman X, Thorbecke J, Verdel A, Wapenaar K (2009) Reflection images from ambient seismic noise. Geophysics 74:A63–A67. doi:10.1190/1.3193529

    Article  Google Scholar 

  • Draganov D, Ghose R, Ruigrok E, Thorbecke J, Wapenaar K (2010) Seismic interferometry, intrinsic losses and Q-estimation. Geophys Prospect 58:361–373. doi:10.1111/j.1365-2478.2009.00828.x

    Article  Google Scholar 

  • Draganov D, Heller K, Ghose R (2012) Monitoring CO2 storage using ghost reflections retrieved from seismic interferometry. Int J Greenh Gas Con 11S:S35–S46. doi:10.1016/j.ijggc.2012.07.026

    Article  Google Scholar 

  • Draganov D, Campman X, Thorbecke J, Verdel A, Wapenaar K (2013) Seismic exploration-scale velocities and structure from ambient-seismic noise (>1 Hz). J Geophys Res 118:1–16. doi:10.1002/jgrb.50339

    Google Scholar 

  • Duvall T, Jeffferies S, Harvey J, Pomerantz A (1993) Time–distance helioseismology. Nature 362:430–432

    Article  Google Scholar 

  • Frank JG, Ruigrok EN, Wapenaar K (2014) Shear wave seismic interferometry for lithospheric imaging: application to southern Mexico. J Geophys Res: Solid Earth 119:5713–5726. doi:10.1002/2013JB010692

    Article  Google Scholar 

  • Kennett B (1991) The removal of free surface interactions from three-component seismograms. Geophys J Int 104:153–163

    Article  Google Scholar 

  • King S, Curtis A (2012) Suppressing nonphysical reflections in Green’s function estimates using source-receiver interferometry. Geophysics 77:Q15–Q25. doi:10.1190/GEO2011-0300.1

    Article  Google Scholar 

  • Nakata N, Snieder R, Tsuji T, Larner K, Matsuoka T (2011) Shear-wave imaging from traffic noise using seismic interferometry by cross-coherence. Geophysics 76:SA97–SA106. doi:10.1190/GEO2010-0188.1

    Article  Google Scholar 

  • Nakata N, Snieder R, Behm M (2014) Body-wave interferometry using regional earthquakes with multidimensional deconvolution after wavefield decomposition at free surface. Geophys J Int 199:1125–1137. doi:10.1093/gji/ggu316

    Article  Google Scholar 

  • Panea I, Draganov D, Almagro Vidal C, Mocanu V (2014) Retrieval of reflections from ambient noise recorded in Mizil area, Romania. Geophysics 79:Q31–Q42. doi:10.1190/GEO2013-0292.1

    Article  Google Scholar 

  • Ruigrok E, Wapenaar K (2012) Global-phase seismic interferometry unveils P-wave reflectivity below the Himalayas and Tibet. Geophys Res Lett 39, L11303. doi:10.1029/2012GL051672

    Google Scholar 

  • Ruigrok E, Campman X, Draganov D, Wapenaar K (2010) High-resolution lithospheric imaging with seismic interferometry. Geophys J Int 183:339–357. doi:10.1111/j.1365-246X.2010.04724.x

    Article  Google Scholar 

  • Ruigrok E, Campman X, Wapenaar K (2011) Extraction of P-wave reflections from microseisms. Comptes Rendus Geoscience 343:512–525. doi:10.1016/j.crte.2011.02.006

    Article  Google Scholar 

  • Scherbaum F (1987) Seismic imaging of the site response using microearthquake recordings, Part II – application to the Swabian Jura, southwest Germany, seismic network. Bull Seismol Soc Am 77:1924–1944

    Google Scholar 

  • Schuster GT (2009) Seismic interferometry. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Schuster GT, Yu J, Rickett J (2004) Interferometric/daylight seismic imaging. Geophys J Int 157:838–852

    Article  Google Scholar 

  • Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31:L07614

    Article  Google Scholar 

  • Snieder R (2004) Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E 69:046610. doi:10.1103/PhysRevE.69.046610

    Article  Google Scholar 

  • Snieder R, Wapenaar K, Larner K (2006) Spurious multiples in seismic interferometry of primaries. Geophysics 71:SI111–SI124. doi:10.1190/1.2211507

    Article  Google Scholar 

  • Wapenaar K (2004) Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys Rev Lett 93:254301. doi:10.1103/PhysRevLett.93.254301

    Article  Google Scholar 

  • Wapenaar K, Fokkema J (2006) Green’s function representations for seismic interferometry. Geophysics 71:SI33–SI46. doi:10.1190/1.2213955

    Article  Google Scholar 

  • Wapenaar K, Draganov D, Robertsson JOA (eds) (2008) Seismic interferometry: history and present status. Society of Exploration Geophysicists, Tulsa

    Google Scholar 

  • Yilmaz O (1999) Seismic data processing, 9th edn. Society of Exploration Geophysicists, Tulsa

    Google Scholar 

  • Zhan Z, Ni S, Helmberger D V, Clayton R W (2010) Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise. Geophys J Int 182:408-420. doi:10.1111/j.1365-246X.2010.04625.x.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyan Draganov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Draganov, D., Ruigrok, E. (2015). Passive Seismic Interferometry for Subsurface Imaging. In: Beer, M., Kougioumtzoglou, I., Patelli, E., Au, IK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_378-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36197-5_378-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36197-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics