Skip to main content

Uncertainty Quantification in Structural Health Monitoring

  • Living reference work entry
  • First Online:
Encyclopedia of Earthquake Engineering

Synonyms

Damage; Detection; Estimation; Localization; Structural frames; Structural health monitoring; Uncertainty

Introduction

Structural health monitoring (SHM) refers to the process of developing and implementing a damage identification strategy for structural applications in civil, aerospace, and mechanical domains (Farrar and Worden 2007). Structural health monitoring techniques play a vital role in earthquake engineering, because they can be used to monitor the performance of structures that have been subjected to earthquakes. This is established through the use of a combination of strategically placed array of sensors and a variety of mathematical methods and techniques, all of which constitute the overall structural health monitoring system.

An ideal SHM system allows rapid assessment of structure, which is particularly relevant in the aftermath of an earthquake, and supports decisions regarding repairs and replacements that are necessary for maintenance, rehabilitation, and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achenbach JD (2000) Quantitative nondestructive evaluation. Int J Solids Struct 37(1):13–27

    Article  MathSciNet  MATH  Google Scholar 

  • Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  • Beck, James L (1989) Statistical System Identification of Structures. In: Proceedings of ICOSSAR ’89, the 5th International Conference on Structural Safety and Reliability, San Francisco, August 7–11, 1989. ASCE, New York, pp. 1395–1402

    Google Scholar 

  • Calvetti D, Somersalo E (2007) An introduction to Bayesian scientific computing: ten lectures on subjective computing, vol 2. Springer, New York

    Google Scholar 

  • Ching J, Beck JL, Porter KA (2006) Bayesian state and parameter estimation of uncertain dynamical systems. Probab Eng Mech 21(1):81–96

    Article  Google Scholar 

  • Dalai M, Weyer E, Campi MC (2005) Parametric Identification of Nonlinear Systems: Guaranteed Confidence Regions. In: Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE Conference on, Seville, 12–15 Dec 2005 pp 6418–6423

    Google Scholar 

  • Farrar CR, Worden K (2007) An introduction to structural health monitoring. Philos Trans R Soc A Math Phys Eng Sci 365(1851):303–315

    Article  Google Scholar 

  • Fisher RA (1930) Statistical methods for research workers 3rd edn. Oliver and Boyd, London

    Google Scholar 

  • Gamerman D, Migon HS (1999) Statistical inference: an integrated approach

    Google Scholar 

  • Jeffreys H (1998) The theory of probability. Oxford University Press, Oxford, UK

    Google Scholar 

  • Jiang X, Mahadevan S (2008) Bayesian wavelet methodology for structural damage detection. Struct Control Health Monit 15(7):974–991

    Article  Google Scholar 

  • Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. J Basic Eng 83(3):95–108

    Article  MathSciNet  Google Scholar 

  • Leonard T, Hsu JSJ (1999) Bayesian methods: an analysis for statisticians and interdisciplinary researchers, vol 5. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • McKeeman WM (1962) Algorithm 145: adaptive numerical integration by Simpson’s rule. Commun ACM 5(12):604

    Article  Google Scholar 

  • Mosterman PJ, Biswas G (1999) Diagnosis of continuous valued systems in transient operating regions. IEEE Trans Syst Man Cybern Part A 29(6):554–565

    Article  Google Scholar 

  • Moustafa A, Mahadevan S, Daigle M, Biswas G (2010) Structural and sensor damage identification using the bond graph approach. Struct Control Health Monit 17(2):178–197

    Article  Google Scholar 

  • Pawitan Y (2001) In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, Oxford

    Google Scholar 

  • Peterka V (1981) Bayesian approach to system identification. Trends and progress in system identification, vol 1. Pergamon Press, Oxford, pp 239–304

    Google Scholar 

  • Romano JP (2005) Testing statistical hypotheses. Springer, New York

    MATH  Google Scholar 

  • Sankararaman S, Mahadevan S (2011) Uncertainty quantification in structural damage diagnosis. Struct Control Health Monit 18(8):807–824

    Article  Google Scholar 

  • Sankararaman S, Mahadevan S (2013) Bayesian methodology for diagnosis uncertainty quantification and health monitoring. Struct Control Health Monit 20(1):88–106

    Article  Google Scholar 

  • Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Sankararaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sankararaman, S., Mahadevan, S. (2014). Uncertainty Quantification in Structural Health Monitoring. In: Beer, M., Kougioumtzoglou, I., Patelli, E., Au, IK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_281-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36197-5_281-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36197-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics