Skip to main content

Zellkultur im großen Maßstab, Automatisierung

  • Chapter
Zell- und Gewebekultur

Zusammenfassung

Auch im Labor ist es hin und wieder nötig, entweder größere Mengen von Zellen (Biomasse) oder Produkte dieser Zellen (z.B. monoklonale Antikörper, Abschn. 19.3; rekombinante Proteine, Abschn. 18.4) zu gewinnen (Massenzellkultur, engl. Scale- up). Es gibt sehr verschiedene Methoden, größere Zellmengen zu züchten, je nachdem, ob es sich um adhärente Zellen (Monolayer) oder in Suspension wachsende Zellen (z. B. lymphoblastoide Zellen, bestimmte Hybridomakulturen, adaptierte CHO-Zellen, Sf9-Kulturen) handelt (Abb. 22-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Barnes L.M. and Dickson A.J. Mammalian cell factories for efficient and stable protein expression. Curr. Opin. Biotechnol. 17: 381–386, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Barnes L.M., Bentley C.M. and Dickson A.J. Stability of protein production from recombinant mammalian cells. Biotechnol. Bioeng. 81: 631–639, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Baron D. Industrielle Produktion monoklonaler Antikörper. Naturwissenschaften 77: 465–471, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Bundesministerium für Bildung und Forschung (BMBF). Biotechnologie, Basis für Innovationen, 2000.

    Google Scholar 

  • Butler M. (ed.). Mammalian Cell Biotechnology. A Practical Approach. Oxford University Press, 1991.

    Google Scholar 

  • Butler M. Animal Cell Culture & Technology. 2nd Ed., BIOS Scientific Publishers, 2004.

    Google Scholar 

  • Butler M. Animal cell cultures: recent achievments and perspectives in the production of biopharmaceuticals. Appl. Microbiol. Biotechnol. 68: 283–291, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Crespi C.L. and Thilly W.G. Continuous cell propagation using low-charge microcarriers. Biotechnol. Bioeng. 23: 983–993, 1981.

    Article  Google Scholar 

  • Croughan M.S. and Hu W.-S. From microcarriers to hydrodynamics: Introducing engineering science into animal cell culture. Biotechnol. Bioeng. 95: 220–225, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Eibl D. und Eibl R. Einwegkultivierungstechnologie für biotechnische Pharmaproduktionen. Bio-World 3, Suppl. 1–2, 2005.

    Google Scholar 

  • Feder J. and Tolbert W.R. The large-scale cultivation of mammalian cells. Scientific American 248: 24–31, 1983.

    Article  Google Scholar 

  • Gardner T.A., Ko S.C., Yang L., Cadwell J.J.S., Chung L.W.K. and Kao C. Serum-free recombinant production of adenovirus using a hollow fiber capillary system. BioTechniques 30: 422–428, 2001.

    PubMed  CAS  Google Scholar 

  • GE Healthcare Amersham Biosciences: Microcarrier Cell Culture, Principles and Methods, 2005.

    Google Scholar 

  • Genzel Y., Behrendt I., König S., Sann H. and Reichl U. Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vacine 22: 2202–2208, 2004.

    Article  CAS  Google Scholar 

  • Hu W.-S. and Aunins J.G. Large-scale mammalian cell culture. Curr. Opin. Biotechnol. 8: 148–153, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hundt B., Best C., Schlawin N., Kaßner H., Genzel Y. and Reichl U. Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave Bioreactor microcarrier culture in 1–10 I scale. Vaccine 25: 3987–3995, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomou L., Schneider Y.-J. and Agathos S.N. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62: 1–20, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Knazek R.A., Gullino P.M., Kohler P.O. and Dedrick R.L. Cell culture on artifical capillaries: an approach to tissue growth in vitro. Science 178: 65–67, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Kretzmer G. Industrial processes with animal cells. Appl. Microbiol. Biotechnol. 59: 135–142, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Landauer K., Dürrschmid M., Klug H. et al. Detachment factors for enhanced carrier to carrier transfer of CHO cell lines on macroporous microcarriers. Cytotechnol. 39: 37–45, 2002.

    Article  CAS  Google Scholar 

  • Li F. et al. Cell culture processes for monoclonal antibody production. MAbs 2: 466–479, 2010.

    Article  PubMed  Google Scholar 

  • Lubiniecki A.S. Large-scale mammalian cell culture technology. Marcel Dekker Inc., 1991.

    Google Scholar 

  • Marks D.M. Equipment design considerations for large scale cell culture. Cytotechnology 42: 21–33, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Martin Y. and Vermette P. Bioreactors for tissue mass culture: Design, characterization, and recent advances. Biomaterials 26: 7481–7503, 2005.

    Article  PubMed  CAS  Google Scholar 

  • McLimans W.F. Mass culture of mammalian cells. Methods Enzymol. 58: 194–211, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Mered B., Albrecht P. and Hopps H.E. Cell growth optimization in micro-carrier culture. In Vitro 16: 859–865, 1980.

    Article  CAS  Google Scholar 

  • Nienow A.W. Reactor engineering in large scale animal cell culture. Cytotechnology 50: 9–33, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson K., Buzsaky F. and Mosbach K. Growth of anchorage dependent cells on macroporous microcarrier. Biotechnology 4: 989–990, 1986. PAN-Systech GmbH (www.pan-systech.de)

    Article  Google Scholar 

  • Pollard J.W. and Walker J.M. Animal cell culture. Methods in Molecular Biology, Vol. 5, Humana Press, 1990.

    Google Scholar 

  • Pörtner R. (Ed). Animal Cell Technology, Methods and Protocols. 2nd Ed., Human Press, 2007.

    Google Scholar 

  • Prokop A. and Rosenberg M.Z. Bioreactor for mammalian cell culture. Adv. Biochem. Eng. 39: 29–71, 1989.

    CAS  Google Scholar 

  • Schmid R.D. Taschenatlas der Biotechnologie und Gentechnik. 2. Aufl., Wiley, 2006.

    Google Scholar 

  • Schulz R., Krafft H. and Lehmann J. Experiences with a new type of micro-carrier. Biotechnol. Lett. 8: 557–560, 1986.

    Article  CAS  Google Scholar 

  • Slivac I., Gaurina Srcek V., Radosevic K., Kmetic I. and Kniewald Z. Aujeszky’s disease virus production in disposable bioreactor. J. Biosci. 31: 363–368, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Smit N.P., Westerhof W., Asghar S.S. et al. Large-scale cultivation of human melanocytes using collagen-coated Sephadex beads (Cytodex 3). J. Invest. Dermatol. 92: 18–21, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Weber W., Weber E., Geisse S. and Memmert K. Optimisation of protein expression and establishment of the Wave bioreactor for Baculovirus/insect cell culture. Cytotechnology 38: 77–85, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Wurm F.M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnol. 22: 1393–1398, 2004.

    Article  CAS  Google Scholar 

  • Young M.W. and Dean R.C. Optimization of mammalian-cell bioreactors. Biotechnology 5: 835–837, 1987.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gstraunthaler, G., Lindl, T. (2013). Zellkultur im großen Maßstab, Automatisierung. In: Zell- und Gewebekultur. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35997-2_22

Download citation

Publish with us

Policies and ethics