Skip to main content

LCD Processing and Testing

  • Living reference work entry
  • First Online:
Handbook of Visual Display Technology
  • 632 Accesses

Abstract

The TFT-LCD technology is based upon semiconductor IC fabrication processing. The unique point of the TFT-LCD technology is that it uses a glass substrate, instead of the conventional Si wafer. For the TFT fabrication process, thin-film formation, such as CVD, sputtering, and film coating on glass substrate are important. In the assembling process of color filter and TFT substrate, photo spacer and ODF have been developed and applied for large-size LCDs. Light source of backlight is being replaced from CCFL by LED. Test and repair technologies have been essential technologies for stable production. As described in this chapter, these technologies are contributing to realize good yield for large-size display fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACF:

Anisotropic conductive film

AOI:

Automatic optical inspection system

a-Si:

Amorphous silicon

BM:

Black matrix

CCFL:

Cold cathode fluorescent lamp

CF:

Color filter

CDO:

Critical dimension and overlay measurement

COF:

Chip on film

COG:

Chip on glass

CVD:

Chemical vapor deposition

FHG:

Fourth harmonic generation

FPC:

Flexible printed circuit board

ITO:

Indium tin oxide

LCD:

Liquid crystal display

LED:

Light-emitting diode

MVA:

Multi-domain vertical alignment

NTSC:

National television system committee (body that develops television standards)

OD:

Optical density

ODF:

One drop fill

OLB:

Out lead bonder

PE-CVD:

Plasma-enhanced chemical vapor deposition

PET:

Polyethylene terephthalate

p-Si:

Polycrystalline silicon

PVA:

Polyvinyl alcohol

SiNx:

Silicon nitride

TAB:

Tape-automated bonding

TAC:

Triacetyl cellulose

TFT:

Thin-film transistor

THG:

Third harmonic generation

μe:

Electron field-effect mobility

YAG:

Yttrium aluminum garnet

Further Reading

  • Colgan EG, et al (1996) Copper-gate process for high information content a-Si TFT-LCDs. In: IDW96 Proceedings, Kobe, pp 29–32

    Google Scholar 

  • Freeman D, Hawthorne J (2000) Implications of super high resolution to array testing. SID Symposium digest of technical papers, Long Beach Convention Center, Long Beach, CA, USA, vol 25.2, 31: 375–377. doi: 10.1889/1.1832960

    Google Scholar 

  • Gourlay J et al (2009) Low-cost large-area LED backlight. In: SID09 DIGEST, San Antonio, USA, vol.48.1, pp 713–715

    Google Scholar 

  • Hirai A, Abe I, Mitsumoto M, Ishida S (2008) One drop filling for liquid crystal display panel produced from larger-sized mother glass. Hitachi Rev 57(3):144–148

    Google Scholar 

  • Hitomi K (2009) 2009 LCD technology outlook (complete works). Electron J 354–357

    Google Scholar 

  • Honoki H, Nakasu N, Arai T, Yoshimura K, Edamura T (2006) In-line automatic defect inspection and repair method for possible highest yield TFT array production. In: IDW06 Proceedings, Ōtsu-shi, Japan, pp 849–852

    Google Scholar 

  • Igarashi D (2009) 2009 LCD technology outlook (complete works). Electron J 336–340

    Google Scholar 

  • Kakishita N (2004) Optical inspection system for the next generation LCD production. In: IDW04 Proceedings, Niigata, Japan, pp 565–568

    Google Scholar 

  • Kamiya H et al (2001) Development of one drop fill technology for AM-LCDs. In: SID01 DIGEST, Boston, USA, pp 1354–1357

    Google Scholar 

  • Koike J, Neishi K, Iijima J, Sutou Y (2007) Possibility of Cu-Mn alloy for TFT gate electrodes. In: IDW07 Proceedings, Sapporo, Japan, pp 2037–2040

    Google Scholar 

  • Le Comber PG, Spear WE, Ghaith A (1979) Amorphous-silicon field-effect device and possible application. Electron Lett 15:179–181

    Article  Google Scholar 

  • Lieberman MA et al (2002) Standing wave and skin effects in large area, high frequency capacitive discharges. Plasma Sources Sci Technol 11:283–293

    Article  Google Scholar 

  • Masuda T, Ajichi Y, Kubo T, Yamamoto T, Shinomiya T, Nakamura M, Shimizu T, Kasai N, Mouri H, Feng XF, Teragawa M (2009) Ultra thin LED backlight system using tandem light guides for large-size LCD-TV. In: IDW09 Proceedings, Miyazaki Japan, pp 1857–1860

    Google Scholar 

  • Mizumura M (2009) 2009 LCD technology outlook (complete works). Electron J 345–349

    Google Scholar 

  • Ohmori H, Sakagawa M, Tani M, Nagase T (2000) A new negative photoresist for LCD spacers with high resolution. In: IDW00 Proceedings, Kobe, Japan, pp 399–402

    Google Scholar 

  • Okita T, Masaki Y (1999) The new photoresist for LCD panel spacer. In: IDW99 Proceedings, Sendai, Japan, pp 415–118

    Google Scholar 

  • OMRON LASERFRONT INC HP (2009) http://www.laserfront.jp/en/product/sl455/adv.html

  • Sato K, Kobayashi S (2001) Flat board probing for 30 m pitched flat panel inspection. In: SID01 DIGEST, Boston, USA, pp 646–649

    Google Scholar 

  • Sirringhaus H, Kahn A, Wagner S (1996) Self-passivated copper gates for thin film silicon transistors. In: IDW96 Proceedings, Kobe, Japan, pp 391–392

    Google Scholar 

  • Snell AJ, Mackenzie KD, Spear WE, Le Comber PG, Hughes AJ (1981) Application of amorphous silicon field effect transistors in addressable liquid crystal display panels. Appl Phys 24:357–362

    Article  Google Scholar 

  • Spear WE, Le Comber PG (1975) Substitutional doping of amorphous silicon. Solid State Commun 17:1193–1196

    Article  Google Scholar 

  • Sun S, Takehara T, Kang ID (2004) Scaling-up PECVD system for large-size substrate processing. In: SID04 DIGEST, Seattle, pp 1499–1501

    Google Scholar 

  • Suzuki Y et al (2005) Ekishou display no dekirumade. In: Nikkan Kogyou Sinbunsya, pp 135–136

    Google Scholar 

  • Takehara T (2005) Newest technology “akt-apxl” process chamber of the PECVD equipment for large TFT-LCD. AKT News 18:32–39

    Google Scholar 

  • Takehara T, Sun S, Kang ID (2004) The latest PECVD technology for large-size TFT-LCD. In: IDW04 Proceedings, pp 603–606

    Google Scholar 

  • Wakabayashi K, Mitobe K, Torigoe T (2004) Laser CVD repair technology for final yield improvement method in mass and large size TFT-LCD production process. In: IDW04 Proceedings, Niigata, Japan, pp 623–624

    Google Scholar 

  • Yamada S et al (2001) A new production of large size TFT-panel by “LC-dropping method”. In: SID01 DIGEST, Boston, USA, pp 1350–1353

    Google Scholar 

  • Yamamoto T, Tomiyoshi A, Masuda T, Fujiwara K, Ajichi Y (2009) The LED backlight of AQUOS XS1. Sharp Tech J 99:32–37

    Google Scholar 

  • Yoshida M, Muramoto K, Oono T (2006) Liquid crystal drop filling (ODF)/vacuum bonding system: V-series. ULVAC Tech J 64:36–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yamamoto, Y. (2015). LCD Processing and Testing. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35947-7_98-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35947-7_98-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-35947-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics