Skip to main content

Membrane Fluidity

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics
  • 120 Accesses

Synonyms

Molecular motion in biological membranes; The mobility of membrane components

Definition

The variety of anisotropic motions which contributes to the mobility of components in the biological membrane.

Introduction

In 1972, Singer and Nicolson (1972) suggested the so-called fluid mosaic model of the biological membrane (Fig. 1). This useful hypothesis explained many phenomena occurring in model and biological membranes. According to this model, membrane proteins and other membrane-embedded compounds are suspended in a two-dimensional fluid formed by phospholipids. This fluid state of membrane lipids is critical for membrane function. It allows, for example, free diffusion and equal distribution of new cell-synthesized lipids and proteins; lateral diffusion of proteins and other molecules in signaling events and other membrane reactions; membrane fusion, i.e., fusion of vesicles with organelles; separation of membranes during cell division; etc.

Fig. 1
figure 1

Singer-Nicolson model of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bretscher MS (1985). The molecules of the cell membrane. Scientific American. 253(4):100–109

    Article  CAS  Google Scholar 

  • Chiang YW, Zhao J, Wu J, Shimoyama Y, Freed JH, Feigenson GW (2005) New method for determining tie-lines in coexisting membrane phases using spin-label ESR. Biochim Biophys Acta 1668:98–105

    Google Scholar 

  • Feigenson GW, Buboltz JT (2001) Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys J 80:2775–2788

    Article  CAS  Google Scholar 

  • Freed JH (1994) Field gradient ESR and molecular diffusion in model membranes. Annu Rev Biophys Biomol Struct 23:1–25

    Article  CAS  Google Scholar 

  • Gennis RB (1989) Biomembranes. Molecular structure and function. Springer, New York

    Google Scholar 

  • Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80:2667–2677

    Article  CAS  Google Scholar 

  • Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172

    Article  CAS  Google Scholar 

  • Jain MK (1988) Introduction to biological membranes. Wiley, New York

    Google Scholar 

  • Kornberg RD, McConnell M (1971) Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 10:1111–1120

    Article  CAS  Google Scholar 

  • Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  CAS  Google Scholar 

  • Lange Y, Dolde J, Steck TL (1981) The rate of transmembrane movement of cholesterol in the human erythrocyte. J Biol Chem 256:5321–5323

    CAS  PubMed  Google Scholar 

  • Marsh D (1990) CRC handbook of lipid bilayers. CRC Press, Boca Raton

    Google Scholar 

  • McElhaney RN (1984) The relationship between membrane fluidity and phase state and the ability of bacteria and mycoplasmas to grow and survive at different temperatures. Biomembranes 12:249–276

    CAS  Google Scholar 

  • Price WS (1997) Pulsed field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory. Concepts Magn Reson 9:299–336

    Article  CAS  Google Scholar 

  • Ritchie K, Iino R, Fujiwara T, Murase K, Kusumi A (2003) The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques. Mol Membr Biol 20:13–18

    Article  CAS  Google Scholar 

  • Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. PNAS 72:3111–3113

    Article  CAS  Google Scholar 

  • Schlebach JP, Barrett PJ, Day CA, Kim JH, Kenworthy AK, Sanders CR (2016) Topologically diverse human membrane proteins partition to liquid-disordered domains in phase-separated lipid vesicles. Biochemistry 55:1111–1120

    Article  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  Google Scholar 

  • Yeagle P (2005) The structure of biological membranes. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Dzikovski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dzikovski, B., Freed, J. (2019). Membrane Fluidity. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_546-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_546-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics