Skip to main content

Applications of EMMS Drag in Industry

  • Chapter
  • First Online:
From Multiscale Modeling to Meso-Science

Abstract

This chapter reviews the use of the EMMS drag and paradigm to solve industrial problems including the design, optimization and scale-up of the fluid catalytic cracking (FCC) process, and optimization of fluidized bed combustion and Fischer-Tropsch (FT) synthesis. Application of the EMMS drag to these problems in turn aids its development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C d :

Effective drag coefficient for a particle

d b :

Bubble diameter, m

d p :

Particle diameter, m

G s :

Solids flux, kg/m2 s

H d :

Heterogeneity index

K*:

Saturation carrying capacity, kg/m2 s

p :

Pressure, Pa

Q :

Gas volumetric flow rate, m3/s

U :

Superficial velocity (=  g), m/s

U ck :

Choking gas velocity, m/s

U s :

Superficial slip velocity, m/s

W :

Solids flow rate (kg/s)

x :

Mass fraction of particles

Y :

Mass fraction of gas species

z :

Axial height, m

Rep :

Local superficial Reynolds number (ρ g d p U s/μ g)

α :

Volume fraction

Θ :

Granular temperature, m2/s2

μ :

Viscosity, Pa s

ρ :

Density, kg/m3

b:

Bubble

g:

Gas phase

l:

Liquid phase

p:

Particle

s:

Solid phase

References

  • Bauer M, Eigenberger G (1999) A concept for multi-scale modeling of bubble columns and loop reactors. Chem Eng Sci 54:5109–5117

    Article  Google Scholar 

  • Chen Y (2006) Recent advances in FCC technology. Powder Technol 163:2–8

    Article  Google Scholar 

  • Chen J, Wu Z, Wang Y, Yang N (2010) Simulation of gas–liquid–solid flow in slurry bubble column reactors (internal report). Institute of Process Engineering Chinese Academy of Sciences, Beijing

    Google Scholar 

  • Cheng C (2001) Energy-minimization multi-scale/Core-annulus model for circulating fluidized beds. Doctoral Thesis, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China (2001)

    Google Scholar 

  • Field MA, Gill DW, Morgan BB, Hawskley PGW (1967) Combustion of pulverized coal. BCURA, Leatherhand, pp 1–100

    Google Scholar 

  • Ge W, Wang W, Yang N, Li J, Kwauk M, Chen F, Chen J, Fang X, Guo L, He X, Liu X, Liu Y, Lu B, Wang J, Wang J, Wang L, Wang X, Xiong Q, Xu M, Deng L, Han Y, Hou C, Hua L, Huang W, Li B, Li C, Li F, Ren Y, Xu J, Zhang N, Zhang Y, Zhou G, Zhou G (2011) Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm. Chem Eng Sci 66:4426–4458

    Article  Google Scholar 

  • Gerstermann F, Kral R, Stein U (1989) Inbetriebname und erstebetriebsergebnisse des Dampferzeugers mit zirkulierender Wirbelschichtfeuerung bei Bayer AG Leverkusen. VGB Kraftwerkstechnik 69(7):702

    Google Scholar 

  • Gidaspow D (1994) Multiphase flow and fluidization-continuum and kinetic theory descriptions. Academic, California

    MATH  Google Scholar 

  • Grace JR, Cui H, Elnashaie SS (2007) Non-uniform distribution of two-phase flows through parallel identical paths. Can J Chem Eng 85:662–668

    Article  Google Scholar 

  • Guillen DP, Grimmett T, Gandrik AM, Antal SP (2009) Development of a computational multiphase flow model for Fischer-Tropsch synthesis in a slurry bubble column reactor. Chem Eng J 176–177:83–94

    Google Scholar 

  • Johnson PC, Jackson R (1987) Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J Fluid Mech 176:67–93

    Article  Google Scholar 

  • Kim TW, Choi JH, Shun DW, Jung B, Kim SS, Son JE, Kim SD, Grace JR (2006) Wastage rate of water walls in a commercial circulating fluidized bed combustor. Can J Chem Eng 84(6):680–687

    Article  Google Scholar 

  • Kim TW, Choi JH, Shun DW, Kim SS, Kim SD, Grace JR (2007) Wear of water walls in a commercial circulating fluidized bed combustor with two gas exits. Powder Technol 178(3):143–150

    Article  Google Scholar 

  • Krishna R, Sie ST (2000) Design and scale-up of the Fischer-Tropsch bubble column slurry reactor. Fuel Process Technol 64:73–105

    Article  Google Scholar 

  • La Nauze RD (1985) Fundamentals of coal combustion. In: Davidson JF, Clift R, Harrison D (eds) Fluidization. Academic, London, pp 631–673

    Google Scholar 

  • Li J, Kwauk M (1994) Particle-fluid two-phase flow: the energy-minimization multi-scale method. Metallurgical Industry Press, Beijing

    Google Scholar 

  • Li J, Kwauk M (2003) Exploring complex systems in chemical engineering—the multi-scale methodology. Chem Eng Sci 58:521–535

    Article  Google Scholar 

  • Li J, Cheng C, Zhang Z, Yuan J, Nemet A, Fett FN (1999) The EMMS model: its application, development and updated concepts. Chem Eng Sci 54:5409–5425

    Article  Google Scholar 

  • Lu B, Wang W, Wang J, Li J (2005) Report on CFD simulation of Sinopec. MIP. RIPP of Sinopec and IPE of CAS (internal report)

    Google Scholar 

  • Lu B, Wang W, Li J, Wang X, Gao S, Lu W, Xu Y, Long J (2007) Multiscale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model. Chem Eng Sci 62:5487–5494

    Article  Google Scholar 

  • Lu B, Wang W, Li J (2009) Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows. Chem Eng Sci 64(15):3437–3447

    Article  Google Scholar 

  • Lu B, Zhang N, Wang W, Li J, Chiu J, Kang S (2012) 3D full-loop simulation of an industrial-scale circulating fluidized bed boiler. AIChE J. doi:10.1002/aic.13917

  • Luecke K, Hartge EU, Werther J (2004) A 3D model of combustion in large-scale circulating fluidized bed boilers. Int J Chem React Eng 2:A11

    Google Scholar 

  • Masnadi MS, Grace JR, Elyasi S, Bi X (2010) Distribution of multi-phase gas-solid flow across identical parallel cyclones: Modeling and experimental study. Sep Purif Technol 72(1):48–55

    Article  Google Scholar 

  • Muroyama A, Fan L-S (1985) Fundamentals of gas–liquid–solid fluidization. AIChE J 30:1–34

    Article  Google Scholar 

  • Myöhänen K, Hyppänen T, Loschkin M (2005) Converting measurement data to process knowledge by using three-dimensional CFB furnace model. In: Cen K (eds) Circulating fluidized bed technology VIII—Proceedings of the 8th international conference on circulating fluidized beds, International Academic Publishers, World Publishing Corp., Hangzhou, pp 306–312

    Google Scholar 

  • Pallares D, Johnsson F (2006) Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds. Prog Energy Combust Sci 32:539–569

    Article  Google Scholar 

  • Schöler J (1993) Ein Gesamtmodell fur Dampferzeugeranlagen mit zirkulierender Wirbelschichtfeuerung. Verlag Shaker, Aachen

    Google Scholar 

  • Wang W, Li J (2007) Simulation of gas–solid two-phase flow by a multi-scale CFD approach-extension of EMMS model to the sub-grid level. Chem Eng Sci 62:208–231

    Article  Google Scholar 

  • Wang W, Li J (2010) Chapter 12—Modeling of fluidized bed combustion. In: Maximilian L, Franz W, Avinash KA (eds) Handbook of combustion, vol. 4. Wiley-VCH, Berlin, pp. 437–472

    Google Scholar 

  • Wang X, Gao S, Xu Y, Zhang J (2005) Gas-solids flow patterns in a novel dual-loop FCC riser. Powder Technol 152:90–99

    Article  Google Scholar 

  • Wang W, Lu B, Li J (2007) Choking and flow regime transitions: simulation by a multi-scale CFD approach. Chem Eng Sci 62:814–819

    Article  Google Scholar 

  • Wang W, Lu B, Dong W, Li J (2008) Multiscale CFD simulation of operating diagram for gas–solid risers. Can J Chem Eng 86:448–457

    Article  Google Scholar 

  • Wang W, Ge W, Yang N, Li J (2011) Chapter 1: Meso-scale modeling—the key to multi-scale CFD simulation. In: Guy BM (ed) Advances in Chemical Engineering. Elsevier, New York, pp 1–58

    Google Scholar 

  • Xiao X, Wang W, Yang H, Zhang J, Yue G (2005) Two-dimensional combustion modeling of CFB boiler furnace based on an Euler-Euler approach and the kinetic theory of granular flow. In: Cen K (eds) Circulating fluidized bed technology VIII—Proceedings of the 8th international conference on circulating fluidized beds, International Academic Publishers, World Publishing Corp., Hangzhou, pp 394–401

    Google Scholar 

  • Xu Y, Zhang J, Rong J (2001) A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha. Pet Process Petrochem 32(8):1–5 (In Chinese)

    Google Scholar 

  • Xu Y, Gong J, Zhang J, Rong J, Xu H (2004) Experimental study on “two reaction zone” concept connected with MIP process. Acta Petrolei Sinica 20(4):1–5 (In Chinese)

    Google Scholar 

  • Yang N, Wang W, Ge W, Li J (2003) Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow. China Particuol 1(1):38–41

    Article  Google Scholar 

  • Yang N, Chen J, Zhao H, Ge W, Li J (2007) Explorations on the multi-scale flow structure and stability condition in bubble columns. Chem Eng Sci 62:6978–6991

    Article  Google Scholar 

  • Yates I, Satterfield C (1991) Intrinsic kinetics of the Fischer–Tropsch synthesis on a cobalt catalyst. Energy Fuels 5:168–173

    Article  Google Scholar 

  • Yue G, Yang H, Nie L, Wang Y, Zhang H (2008) Hydrodynamics of 300 MW e and 600 MW e CFB boilers with asymmetric cyclone layout. Circulating fluidized bed technology IX—Proceedings of the 9th international conference on circulating fluidized beds, Hamburg, pp 153–158

    Google Scholar 

  • Zhang N (2010) EMMS-based meso-scale mass transfer model and its application to circulating fluidized bed combustion simulation. Doctoral thesis, Institute of Process Engineering, Chinese Academy of Sciences. (in Chinese)

    Google Scholar 

  • Zhang N, Lu B, Wang W, Li J (2010) 3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler. Chem Eng J 162(2):821–828

    Article  Google Scholar 

  • Zhou W, Zhao CS, Duan LB, Qu CR, Chen XP (2011) Two-dimensional computational fluid dynamics simulation of coal combustion in a circulating fluidized bed combustor. Chem Eng J 166:306–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghai Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, J. et al. (2013). Applications of EMMS Drag in Industry. In: From Multiscale Modeling to Meso-Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35189-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35189-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35188-4

  • Online ISBN: 978-3-642-35189-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics