Skip to main content

Anytime Algorithms for Biobjective Heuristic Search

  • Conference paper
AI 2012: Advances in Artificial Intelligence (AI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7691))

Included in the following conference series:

Abstract

Heuristic search algorithms (MOA*, NAMOA* etc) for multiobjective optimization problems, when run with admissible heuristics, typically spend a lot of time and require huge amount of memory for generating the Pareto optimal solution frontier due to the fact that these algorithms expand all nodes/paths whose cost is not dominated by any other optimal solution. In this paper, we present an anytime heuristic search framework for biobjective optimization problems named “Anytime Biobjective Search (ABS)” which quickly finds a set of nondominated solutions and keeps on improving the solution frontier with time. The proposed framework uses the upper and lower limit estimates on one of the objectives to split the search space into a given number of segments and independently runs a particular search algorithm (branch-and-bound, beam search etc.) within each of the segments. In this paper, we present how existing search strategies, branch-and-bound, beam, and beam-stack, can be used within the proposed framework. Experimental results reveal that our proposed framework achieves good anytime performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gajski, D., Dutt, N., Wu, A., Lin, S.: High-level synthesis: introduction to chip and system design. Kluwer Academic Publishers, Norwell (1992)

    Google Scholar 

  2. Elton, E.J., Gruber, M.J., Blake, C.R.: Modern portfolio theory, 1950 to date. SSRN eLibrary (1997)

    Google Scholar 

  3. Mishkin, F.S.: The Economics of Money, Banking, and Financial Markets, 7th edn. Addison-Wesley (2004)

    Google Scholar 

  4. Müller-Hannemann, M., Weihe, K.: On the cardinality of the Pareto set in bicriteria shortest path problems. Annals OR 147(1), 269–286 (2006)

    Article  MATH  Google Scholar 

  5. Jahn, O., Möhring, R.H., Schulz, A.S., Stier-Moses, N.E.: System-optimal routing of traffic flows with user constraints in networks with congestion. Operations Research 53(4), 600–616 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nilsson, N.J.: Principle of artificial intelligence. Tioga Publishing Co. (1980)

    Google Scholar 

  7. Stewart, B.S., White III, C.C.: Multiobjective A*. J. ACM 38, 775–814 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dasgupta, P., Chakrabarti, P.P., DeSarkar, S.C.: Multiobjective heuristic search in AND/OR graphs. Journal of Algorithms 20(2), 282–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mandow, L., Pérez-de-la-Cruz, J.L.: Multiobjective A* search with consistent heuristics. J. ACM 57(5), 27:1–27:25 (2010)

    Article  MathSciNet  Google Scholar 

  10. Zhou, R., Hansen, E.A.: Beam-stack search: Integrating backtracking with beam search. In: ICAPS, pp. 90–98 (2005)

    Google Scholar 

  11. Furcy, D., Koenig, S.: Limited discrepancy beam search. In: IJCAI, pp. 125–131 (2005)

    Google Scholar 

  12. Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-optimality. In: NIPS (2003)

    Google Scholar 

  13. Röger, G., Helmert, M.: The more, the merrier: Combining heuristic estimators for satisficing planning. In: ICAPS, pp. 246–249 (2010)

    Google Scholar 

  14. Valenzano, R.A., Sturtevant, N.R., Schaeffer, J., Buro, K., Kishimoto, A.: Simultaneously searching with multiple settings: An alternative to parameter tuning for suboptimal single-agent search algorithms. In: ICAPS, pp. 177–184 (2010)

    Google Scholar 

  15. Vadlamudi, S.G., Aine, S., Chakrabarti, P.P.: MAWA* - a memory-bounded anytime heuristic-search algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B 41(3), 725–735 (2011)

    Article  Google Scholar 

  16. Thayer, J.T., Ruml, W.: Anytime heuristic search: Frameworks and algorithms. In: The Third Annual Symposium on Combinatorial Search (2010)

    Google Scholar 

  17. Likhachev, M., Ferguson, D., Gordon, G.J., Stentz, A., Thrun, S.: Anytime search in dynamic graphs. Artif. Intell. 172(14), 1613–1643 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hansen, E.A., Zhou, R.: Anytime heuristic search. J. Artif. Intell. Res. (JAIR) 28, 267–297 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Aine, S., Chakrabarti, P.P., Kumar, R.: AWA* - a window constrained anytime heuristic search algorithm. In: IJCAI, pp. 2250–2255 (2007)

    Google Scholar 

  20. Tsaggouris, G., Zaroliagis, C.D.: Multiobjective optimization: Improved FPTAS for shortest paths and non-linear objectives with applications. Theory Comput. Syst. 45(1), 162–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Perny, P., Spanjaard, O.: Near admissible algorithms for multiobjective search. In: ECAI, pp. 490–494 (2008)

    Google Scholar 

  22. Angel, E., Bampis, E., Kononov, A.: On the approximate tradeoff for bicriteria batching and parallel machine scheduling problems. Theor. Comput. Sci. 306(1-3), 319–338 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective knapsack problems. Manage. Sci. 48(12), 1603–1612 (2002)

    Article  MATH  Google Scholar 

  24. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: FOCS, pp. 86–92 (2000)

    Google Scholar 

  25. Barichard, V., Hao, J.K.: A Population and Interval Constraint Propagation Algorithm. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 88–101. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: Application to the biobjective spanning tree problem. INFORMS Journal on Computing 20(3), 472–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Branke, J., Deb, K., Miettinen, K., Slowinski, R.: Multiobjective Optimization. LNCS, vol. 5252. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  28. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  29. Sarkar, U.K., Chakrabarti, P.P., Ghose, S., Sarkar, S.C.D.: Multiple stack branch and bound. Inf. Process. Lett. 37(1), 43–48 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Machuca, E., Mandow, L., Pérez-de-la-Cruz, J.L., Ruiz-Sepúlveda, A.: A comparison of heuristic best-first algorithms for bicriterion shortest path problems. European Journal of Operational Research 217(1), 44–53 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mandow, L., Pérez-de-la-Cruz, J.L.: A multiobjective frontier search algorithm. In: IJCAI, pp. 2340–2345 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghosh, P., Chakrabarti, P.P., Dasgupta, P. (2012). Anytime Algorithms for Biobjective Heuristic Search. In: Thielscher, M., Zhang, D. (eds) AI 2012: Advances in Artificial Intelligence. AI 2012. Lecture Notes in Computer Science(), vol 7691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35101-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35101-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35100-6

  • Online ISBN: 978-3-642-35101-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics