Skip to main content

Shot-by-Shot Photoelectron Spectroscopy of Rare Gas Atoms in Ultrashort Intense EUV Free-Electron Laser Fields

  • Chapter
Progress in Ultrafast Intense Laser Science

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 104))

  • 1393 Accesses

Abstract

Nonlinear processes of rare gas atoms in intense extreme ultraviolet (EUV) free-electron laser (FEL) fields have been investigated by photoelectron spectroscopy. Simultaneous recording of fluctuating laser spectra from self-amplified spontaneous emission (SASE) FEL and nonlinear responses of target atoms provided a deeper understanding on the multiphoton processes in (i) double ionization of Ar and (ii) double excitation of He, in intense EUV laser fields. Results on two-color time-resolved experiment are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Ackermann et al., Nat. Photonics 1, 336–342 (2007)

    Article  ADS  Google Scholar 

  2. T. Shintake et al., Nat. Photonics 2, 555–559 (2008)

    Article  Google Scholar 

  3. P. Emma et al., Nat. Photonics 4, 641–647 (2010)

    Article  ADS  Google Scholar 

  4. B. Sheehy, L.F. DiMauro, Annu. Rev. Phys. Chem. 47, 463–469 (1996)

    Article  ADS  Google Scholar 

  5. J.H. Posthumus, Rep. Prog. Phys. 67, 623–665 (2004)

    Article  ADS  Google Scholar 

  6. L.V. Keldysh, Sov. Phys. JETP 20, 1307–1314 (1965)

    MathSciNet  Google Scholar 

  7. T. Sato et al., Appl. Phys. Lett. 92, 154103 (2008)

    Article  ADS  Google Scholar 

  8. H. Fukuzawa et al., Phys. Rev. A 79, 031201(R) (2009)

    Article  ADS  Google Scholar 

  9. H. Iwayama et al., J. Phys. B 42, 134019 (2009)

    Article  ADS  Google Scholar 

  10. K. Motomura et al., J. Phys. B 42, 221003 (2009)

    Article  ADS  Google Scholar 

  11. Y. Hikosaka et al., Phys. Rev. Lett. 105, 133001 (2010)

    Article  ADS  Google Scholar 

  12. S.Y. Liu et al., Phys. Rev. A 81, 031403(R) (2010)

    ADS  Google Scholar 

  13. H. Fukuzawa et al., J. Phys. B 43, 111001 (2010)

    Article  ADS  Google Scholar 

  14. A. Hishikawa et al., Phys. Rev. Lett. 107, 243003 (2011)

    Article  ADS  Google Scholar 

  15. N. Miyauchi et al., J. Phys. B 44, 071001 (2011)

    Article  ADS  Google Scholar 

  16. M. Nagasono et al., Phys. Rev. Lett. 107, 193603 (2011)

    Article  ADS  Google Scholar 

  17. T. Sato et al., J. Phys. B 44, 161001 (2011)

    Article  ADS  Google Scholar 

  18. H. Wabnitz et al., Phys. Rev. Lett. 94, 023001 (2005)

    Article  ADS  Google Scholar 

  19. M. Meyer et al., Phys. Rev. A 74, 011401(R) (2006)

    ADS  Google Scholar 

  20. R. Moshammer et al., Phys. Rev. Lett. 98, 203001 (2007)

    Article  ADS  Google Scholar 

  21. M. Nagasono et al., Phys. Rev. A 75, 051406 (2007)

    Article  ADS  Google Scholar 

  22. A.A. Sorokin et al., Phys. Rev. Lett. 99, 213002 (2007)

    Article  ADS  Google Scholar 

  23. A. Rudenko et al., Phys. Rev. Lett. 101, 073003 (2008)

    Article  ADS  Google Scholar 

  24. C. Bostedt et al., Phys. Rev. Lett. 100 (2008)

    Google Scholar 

  25. P. Johnsson et al., J. Phys. B 42, 134017 (2009)

    Article  ADS  Google Scholar 

  26. M. Kurka et al., J. Phys. B 42, 141002 (2009)

    Article  ADS  Google Scholar 

  27. M.G. Makris, P. Lambropoulos, A. Mihelič, Phys. Rev. Lett. 102, 033002 (2009)

    Article  ADS  Google Scholar 

  28. M. Martins et al., Phys. Rev. A 80, 023411 (2009)

    Article  ADS  Google Scholar 

  29. M. Richter et al., Phys. Rev. Lett. 102, 163002 (2009)

    Article  ADS  Google Scholar 

  30. M. Meyer et al., Phys. Rev. Lett. 104, 213001 (2010)

    Article  ADS  Google Scholar 

  31. M. Richter et al., J. Phys. B 43, 194005 (2010)

    Article  ADS  Google Scholar 

  32. J.M. Glownia et al., Opt. Express 18, 17620–17630 (2010)

    Article  ADS  Google Scholar 

  33. L. Young et al., Nature 466, 56–61 (2010)

    Article  ADS  Google Scholar 

  34. M. Meyer et al., Phys. Rev. Lett. 108, 063007 (2012)

    Article  ADS  Google Scholar 

  35. G. Zhu et al., Phys. Rev. Lett. 103, 103008 (2009)

    Article  ADS  Google Scholar 

  36. M. Wellhöfer et al., J. Instrum. 3, P02003 (2008)

    Article  Google Scholar 

  37. T. Shintake et al., Phys. Rev. Spec. Top., Accel. Beams 12, 070701 (2009)

    Article  ADS  Google Scholar 

  38. T. Togashi et al., Opt. Express 19, 317–324 (2010)

    Article  ADS  Google Scholar 

  39. A.A. Wills, A.A. Cafolla, J. Comer, J. Phys. B 24, 3989 (1991)

    Article  ADS  Google Scholar 

  40. T.X. Carroll et al., J. Electron Spectrosc. Relat. Phenom. 125, 127–132 (2002)

    Article  Google Scholar 

  41. A. Hibbert, J.E. Hansen, J. Phys. B 27, 3325–3347 (1994)

    Article  ADS  Google Scholar 

  42. E.V. Gryzlova et al., Phys. Rev. A 84, 063405 (2011)

    Article  ADS  Google Scholar 

  43. D.W. Lindle et al., Phys. Rev. A 31, 714–726 (1985)

    Article  ADS  Google Scholar 

  44. M. Domke et al., Phys. Rev. A 53, 1424 (1996)

    Article  ADS  Google Scholar 

  45. P. Radcliffe et al., Appl. Phys. Lett. 90, 131108 (2007)

    Article  ADS  Google Scholar 

  46. M. Meyer et al., J. Phys. B 43, 194006 (2010)

    Article  ADS  Google Scholar 

  47. R. Neutze et al., Nature 406, 752–757 (2000)

    Article  ADS  Google Scholar 

  48. Y. Nishino et al., Appl. Phys. Express 3, 102701 (2010)

    Article  ADS  Google Scholar 

  49. A.P. Mancuso et al., New J. Phys. 12, 035003 (2010)

    Article  ADS  Google Scholar 

  50. H.N. Chapman et al., Nature 470, 73–77 (2011)

    Article  ADS  Google Scholar 

  51. Y. Huismans et al., Science 331, 61–64 (2011)

    Article  ADS  Google Scholar 

  52. H. Yoneda et al., Opt. Express 17, 23443–23448 (2009)

    Article  ADS  Google Scholar 

  53. T.E. Glover et al., Nat. Phys. 6, 69–74 (2010)

    Article  Google Scholar 

  54. B. Nagler et al., Nat. Phys. 5, 693–696 (2009)

    Article  Google Scholar 

  55. N.A. Inogamov et al., Contrib. Plasma Phys. 51, 419–426 (2011)

    Article  ADS  Google Scholar 

  56. E.B. Saloman, J. Phys. Chem. Ref. Data 39, 033101 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the staff in the SCSS Test Accelerator Group at RIKEN and Dr. C.-M. Tseng at Institute for Molecular Science for their support in the experiments. We thank Prof. T. Morishita at University of Electro-Communications and Prof. C.-N. Liu at Fu-Jen Catholic University for theoretical calculations of double excitation of He and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Hishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fushitani, M., Hikosaka, Y., Matsuda, A., Shigemasa, E., Hishikawa, A. (2013). Shot-by-Shot Photoelectron Spectroscopy of Rare Gas Atoms in Ultrashort Intense EUV Free-Electron Laser Fields. In: Yamanouchi, K., Midorikawa, K. (eds) Progress in Ultrafast Intense Laser Science. Springer Series in Chemical Physics, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35052-8_9

Download citation

Publish with us

Policies and ethics