Skip to main content

Trajectory-Based Coulomb-Corrected Strong Field Approximation

  • Chapter
Progress in Ultrafast Intense Laser Science

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 104))

Abstract

The strong field approximation (SFA) is one of the most successful theoretical approaches to tackle the problem of atomic or molecular ionization in intense laser fields. In the semi-classical limit, the SFA possesses an appealing interpretation in terms of interfering quantum trajectories, which mathematically originate from the saddle point approximation to the SFA transition matrix element. The trajectories not only allow to interpret particular features in photoelectron spectra in an intuitive way in terms of possible electron pathways typical for a quantum mechanical “multi-slit experiment” but also serve as a starting point for adopting Coulomb corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.B. Milošević, G.G. Paulus, D. Bauer, W. Becker, J. Phys. B 39, R203 (2006)

    Article  ADS  Google Scholar 

  2. J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L.P.H. Schmidt, H. Schmidt-Böcking, Rep. Prog. Phys. 66, 1463–1545 (2003)

    Article  ADS  Google Scholar 

  3. L.V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1945 (1964)

    Google Scholar 

  4. F.H.M. Faisal, J. Phys. B, At. Mol. Phys. 6, L89 (1973)

    Article  ADS  Google Scholar 

  5. H.R. Reiss, Phys. Rev. A 22, 1786 (1980)

    Article  ADS  Google Scholar 

  6. S.P. Goreslavski, G.G. Paulus, S.V. Popruzhenko, N.I. Shvetsov-Shilovski, Phys. Rev. Lett. 93, 233002 (2004)

    Article  ADS  Google Scholar 

  7. S.V. Popruzhenko, G.G. Paulus, D. Bauer, Phys. Rev. A 77, 053409 (2008)

    Article  ADS  Google Scholar 

  8. S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 71, 053815 (2005)

    Article  ADS  Google Scholar 

  9. A. Rudenko, K. Zrost, C.D. Schröter, V.L.B. de Jesus, B. Feuerstein, R. Moshammer, J. Ullrich, J. Phys. B 37, L407 (2004)

    Article  ADS  Google Scholar 

  10. R. Moshammer, J. Ullrich, B. Feuerstein, D. Fischer, A. Dorn, C.D. Schröter, J.R. Crespo Lopez-Urrutia, C. Hoehr, H. Rottke, C. Trump, M. Wittmann, G. Korn, W. Sandner, Phys. Rev. Lett. 91, 113002 (2003)

    Article  ADS  Google Scholar 

  11. D.G. Arbó, S. Yoshida, E. Persson, K.I. Dimitriou, J. Burgdörfer, Phys. Rev. Lett. 96, 143003 (2006)

    Article  ADS  Google Scholar 

  12. C.I. Blaga, F. Catoire, P. Colosimo, G.G. Paulus, H.G. Muller, P. Agostini, L.F. DiMauro, Nat. Phys. 5, 335 (2009)

    Article  Google Scholar 

  13. W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X.T. He, S.G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, Z.Z. Xu, Phys. Rev. Lett. 103, 093001 (2009)

    Article  ADS  Google Scholar 

  14. A.M. Perelomov, V.S. Popov, Zh. Éksp. Teor. Fiz. 52, 514 (1967) [Sov. Phys. JETP 25, 336 (1967)]

    Google Scholar 

  15. F.H.M. Faisal, G. Schlegel, J. Phys. B 38, L223–L231 (2005)

    Article  ADS  Google Scholar 

  16. D.G. Arbó, J.E. Miraglia, M.S. Gravielle, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 77, 013401 (2008)

    Article  ADS  Google Scholar 

  17. O. Smirnova, M. Spanner, M. Ivanov, Phys. Rev. A 77, 033407 (2008)

    Article  ADS  Google Scholar 

  18. S.V. Popruzhenko, D. Bauer, J. Mod. Opt. 55, 2573 (2008)

    Article  MATH  Google Scholar 

  19. T.-M. Yan, S.V. Popruzhenko, M.J.J. Vrakking, D. Bauer, Phys. Rev. Lett. 105, 253002 (2010)

    Article  ADS  Google Scholar 

  20. M.S. Gravielle, D.G. Arbó, J.E. Miraglia, M.F. Ciappina, J. Phys. B 45, 015601 (2012)

    Article  ADS  Google Scholar 

  21. W. Gordon, Z. Phys. 40, 117 (1926)

    Article  ADS  MATH  Google Scholar 

  22. D.V. Volkov, Z. Phys. 94, 250 (1935)

    Article  ADS  MATH  Google Scholar 

  23. M.V. Frolov, N.L. Manakov, A.F. Starace, Phys. Rev. A 79, 033406 (2009)

    Article  ADS  Google Scholar 

  24. D.B. Milošević, G.G. Paulus, W. Becker, Phys. Rev. Lett. 89, 153001 (2002)

    Article  ADS  Google Scholar 

  25. W. Becker, F. Grasbon, R. Kopold, D.B. Milošević, G.G. Paulus, H. Walther, Adv. At. Mol. Opt. Phys. 48, 35 (2002)

    Article  ADS  Google Scholar 

  26. P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G.G. Paulus, H. Walther, R. Kopold, W. Becker, D.B. Milošević, A. Sanpera, M. Lewenstein, Science 292, 902 (2001)

    Article  ADS  Google Scholar 

  27. F. Lindner, M.G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D.B. Milošević, D. Bauer, W. Becker, G.G. Paulus, Phys. Rev. Lett. 95, 040401 (2005)

    Article  ADS  Google Scholar 

  28. R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Künel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, M.F. Kling, Phys. Rev. Lett. 103, 053001 (2009)

    Article  ADS  Google Scholar 

  29. G.G. Paulus, D. Bauer, in Time in Quantum Mechanics II. Lecture Notes in Physics (Springer, Berlin, 2010)

    Google Scholar 

  30. V.S. Popov, Phys. At. Nucl. 68, 686 (2005)

    Article  Google Scholar 

  31. D. Bauer, P. Koval, Comput. Phys. Commun. 174, 396 (2006)

    Article  ADS  MATH  Google Scholar 

  32. S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 71, 053815 (2005)

    Article  ADS  Google Scholar 

  33. Y. Huismans, A. Rouzée, A. Gijsbertsen, J.H. Jungmann, A.S. Smolkowska, P.S.W.M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J.M. Bakker, G. Berden, B. Redlich, A.F.G. van der Meer, H.G. Muller, W. Vermin, K.J. Schafer, M. Spanner, M.Y. Ivanov, O. Smirnova, D. Bauer, S.V. Popruzhenko, M.J.J. Vrakking, Science 331, 61 (2011)

    Article  ADS  Google Scholar 

  34. C. Liu, K.Z. Hatsagortsyan, Phys. Rev. Lett. 105, 113003 (2010)

    Article  ADS  Google Scholar 

  35. A. Kästner, U. Saalmann, J.M. Rost, Phys. Rev. Lett. 108, 033201 (2012)

    Article  ADS  Google Scholar 

  36. M. Lewenstein, P. Salières, A. L’Huillier, Phys. Rev. A 52, 4747–4754 (1995)

    Article  ADS  Google Scholar 

  37. T.-M. Yan, D. Bauer, Phys. Rev. A 86, 053403 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the Deutsche Forschungsgemeinschaft (SFB 652) and the Russian Foundation for Basic Research. T.-M. Yan acknowledges support from the International Max Planck Research School for Quantum Dynamics (IMPRS-QD) in Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yan, TM., Popruzhenko, S.V., Bauer, D. (2013). Trajectory-Based Coulomb-Corrected Strong Field Approximation. In: Yamanouchi, K., Midorikawa, K. (eds) Progress in Ultrafast Intense Laser Science. Springer Series in Chemical Physics, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35052-8_1

Download citation

Publish with us

Policies and ethics