Skip to main content

The Theory and Applications of Generalized Complex Fuzzy Propositional Logic

  • Chapter
Soft Computing: State of the Art Theory and Novel Applications

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 291))

Abstract

The current definition of complex fuzzy logic has two limitations. First, the derivation uses complex fuzzy relations; hence, it assumes the existence of complex fuzzy sets. Second, current theory is based on a restricted polar representation of complex fuzzy proposition, where only one component of a complex fuzzy proposition carries fuzzy information. In this chapter we present a novel form of complex fuzzy logic. The new theory, referred to as generalized complex fuzzy logic, overcomes the limitations of the current theory and provides several advantages. First, the derivation of the new theory is based on axiomatic approach and does not assume the existence of complex fuzzy sets or complex fuzzy classes. Second, the new form supports Cartesian and polar representation of complex logical propositions with two components of fuzzy information. Hence, the new form significantly improves the expressive power and inference capability of complex fuzzy logic. Finally, the new form is compatible with (yet independent of) the definition of complex fuzzy classes; thereby providing further improvement in the expressive power and inference capability. The chapter surveys the current state of complex fuzzy sets, complex fuzzy classes, and complex fuzzy logic; and provides a new and generalized complex fuzzy propositional logic theory. The new theory has potential for usage in advanced complex fuzzy logic systems and latent for extension into multidimensional fuzzy propositional and predicate logic. Moreover, it can be used for inference with type 2 (or higher) fuzzy sets. Furthermore, the introduction of complex logic can be used for analysis of periodic temporal fuzzy processes where the period is fuzzy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kandel, A.: Fuzzy Mathematical Techniques with Applications. Addison Wesley, New York (1987)

    Google Scholar 

  3. Zadeh, L.A.: Fuzzy Logic and Its Application to Approximate Reasoning. In: Proceedings ofthe IFIP Congress, pp. 591–594 (1974)

    Google Scholar 

  4. Drianko, D., Hellendorf, H., Reinfrank, M.: An introduction to fuzzy control. Springer (1993)

    Google Scholar 

  5. Halpern, J.Y.: Reasoning about uncertainty. MIT Press (2003)

    Google Scholar 

  6. Last, M., Klein, Y., Kandel, A.: Knowledge Discovery in Time Series Databases. IEEE Transactions on Systems, Man, and Cybernetics 31(Part B,1), 160–169 (2001)

    Google Scholar 

  7. Tamir, D.E., Kandel, A.: An axiomatic approach to fuzzy set theory. Information Sciences 52, 75–83 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tamir, D.E., Kandel, A.: Fuzzy semantic analysis and formal specification of conceptual knowledge. Information Sciences, Intelligent systems 82(3-4), 181–196 (1995)

    Article  MATH  Google Scholar 

  9. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - Part I. Information Sciences 7, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  10. Ronen, M., Shabtai, R., Guterman, H.: Hybrid model building methodology using unsupervised fuzzy clustering and supervised neural networks. Biotechnology and Bioengineering 77(4), 420–429 (2002)

    Article  Google Scholar 

  11. Agarwal, D., Tamir, D.E., Last, M., Kandel, A.: A comparative study of software testing using artificial neural networks and Info-Fuzzy networks. Accepted for publication in the IEEE, Transactions on Man Machine and Cybernetics, Part A (2012)

    Google Scholar 

  12. Tamir, D.E., Kandel, A.: The Pyramid Fuzzy C-means Algorithm. International Journal of Computational Intelligence in Control (December 2011)

    Google Scholar 

  13. De, S.P., Krishna, R.P.: A new approach to mining fuzzy databases using nearest neighbor classification by exploiting attribute hierarchies. International Journal of Intelligent Systems, 2004 19(12), 1277–1290 (2004)

    Article  MATH  Google Scholar 

  14. Qiu, T., Chen, X., Liu, Q., Huang, H.: Granular computing approach to finding association rules in relational database. International Journal of Intelligent Systems 25(2), 165–179 (2010)

    MATH  Google Scholar 

  15. Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Transactions on Fuzzy Systems 2002 10(2), 171–186 (2002)

    Article  Google Scholar 

  16. Ramot, D., Friedman, M., Langholz, G., Kandel, A.: Complex fuzzy logic. IEEE Transactions on Fuzzy Systems 11(4), 450–461 (2003)

    Article  Google Scholar 

  17. Tamir, D.E., Lin, J., Kandel, A.: A New Interpretation of Complex Membership Grade. International Journal of Intelligent Systems (2011)

    Google Scholar 

  18. Tamir, D.E., Kandel, A.: Axiomatic Theory of Complex Fuzzy Logic and Complex Fuzzy Classes (invited paper). Int. J. of Computers, Communications & Control VI(3) (2011)

    Google Scholar 

  19. Dick, S.: Towards complex fuzzy logic. IEEE Transaction on Fuzzy Systems 13, 405–414 (2005)

    Article  Google Scholar 

  20. Cintula, P.: Weakly implicative fuzzy logics. Archive for Mathematical Logic 45(6), 673–704 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baaz, M., Hajek, P., Montagna, F., Veith, H.: Complexity of t-tautologies. Annals of Pure and Applied Logic 113(1-3), 3–11 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Běhounek, L., Cintula, P.: Fuzzy class theory. Fuzzy Sets and Systems 154(1), 34–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fraenkel, A.A., Bar-Hillel, Y., Levy, A.: Foundations of set theory, 2nd edn. Elsevier, Amsterdam (1973)

    MATH  Google Scholar 

  24. Montagna, F.: On the predicate logics of continuous t-norm BL-algebras. Archives of Mathematical Logic 44, 97–114 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moses, D., Degani, O., Teodorescu, H., Friedman, M., Kandel, A.: Linguistic coordinate transformations for complex fuzzy sets. In: 1999 IEEE International Conference on Fuzzy Systems, Seoul, Korea (1999)

    Google Scholar 

  26. Zhang, G., Dillon, T.S., Cai, K., Ma, J., Lu, J.: Operation properties and delta equalities of complex fuzzy sets. International Journal on Approximate Reasoning 50(8), 1227–1249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nguyen, H.T., Kandel, A., Kreinovich, V.: Complex fuzzy sets: towards new foundations. In: Proceedings, 2000 IEEE International Conference on Fuzzy Systems, San Antonio, Texas (2000)

    Google Scholar 

  28. Deshmukh, A.Y., Bavaskar, A.B., Bajaj, P.R., Keskar, A.G.: Implementation of complex fuzzy logic modules with VLSI approach. International Journal on Computer Science and Network Security 8, 172–178 (2008)

    Google Scholar 

  29. Chen, Z., Aghakhani, S., Man, J., Dick, S.: ANCFIS: A Neuro-Fuzzy Architecture Employing Complex Fuzzy Sets. IEEE, Transactions on Man Machine and Cybernetics, Part A 19(2) (2011)

    Google Scholar 

  30. Man, J., Chen, Z., Dick, S.: Towards inductive learning of complex fuzzy inference systems. In: Proceedings of the International Conference of the North American Fuzzy Information Processing, San Diego, CA (2007)

    Google Scholar 

  31. Hirose, A.: Complex-valued neural networks. Springer (2006)

    Google Scholar 

  32. Michel, H.E., Awwal, A.A.S., Rancour, D.: Artificial neural networks using complex numbers and phase encoded weights-electronic and optical implementations. In: Proceedings of the International Joint Conference on Neural Networks, Vancouver, BC (2006)

    Google Scholar 

  33. Noest, A.J.: Discrete-state phasor neural nets. Physics Review A 38, 2196–2199 (1988)

    Article  Google Scholar 

  34. Leung, S.H., Hyakin, S.: The complex back propagation algorithm. IEEE Transactions on Signal Processing 39(9), 2101–2104 (1991)

    Article  Google Scholar 

  35. Iritani, N.T., Sakakibara, K.: Improvements of the traffic signal control by complex-valued Hopfield networks. In: Proceedings of the International Joint Conference on Neural Networks, Vancouver, BC,

    Google Scholar 

  36. Buckley, J.J.: Fuzzy complex numbers. Fuzzy Sets and Systems 33, 333–345 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Buckley, J.J., Qu, Y.: Fuzzy complex analysis I: differentiation. Fuzzy Sets and Systems 41, 269–284 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Buckley, J.J.: Fuzzy complex analysis II: integration. Fuzzy Sets and Systems 49, 171–179 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Buckley, J.J., Qu, Y.: Solving linear and quadratic fuzzy equations. Fuzzy Sets and Systems 38, 43–59 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Buckley, J.J., Qu, Y.: Solving fuzzy equations: a new solution concept. Fuzzy Sets and Systems 41, 291–301 (1991)

    Article  Google Scholar 

  41. Zhang, G.: Fuzzy limit theory of fuzzy complex numbers. Fuzzy Sets and Systems 46(2), 227–2352 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu, C., Qiu, J.: Some remarks for fuzzy complex analysis. Fuzzy Sets and Systems 106, 231–238 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma, S., Peng, D., Li, D.: Fuzzy complex value measure and fuzzy complex value measurable function. In: Proceedings of the Third Annual Conference on Fuzzy Information and Engineering, Haikou, China, pp. 187–192 (2008)

    Google Scholar 

  44. Mundici, D., Cignoli, R., D’Ottaviano, I.M.L.: Algebraic foundations of many-valued reasoning. Kluwer Academic Press (1999)

    Google Scholar 

  45. Hájek, P.: Fuzzy logic and arithmetical hierarchy. Fuzzy Sets and Systems 3(8), 359–363 (1995)

    Article  Google Scholar 

  46. Casasnovas, J., Rosselló, F.: Scalar and fuzzy cardinalities of crisp and fuzzy multisets. International Journal of Intelligent Systems 24(6), 587–623 (2009)

    Article  MATH  Google Scholar 

  47. Cintula, P.: Advances in LΠ and LΠ1/2 logics. Archives of Mathematical Logic 42, 449–468 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan E. Tamir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tamir, D.E., Last, M., Kandel, A. (2013). The Theory and Applications of Generalized Complex Fuzzy Propositional Logic. In: Yager, R., Abbasov, A., Reformat, M., Shahbazova, S. (eds) Soft Computing: State of the Art Theory and Novel Applications. Studies in Fuzziness and Soft Computing, vol 291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34922-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34922-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34921-8

  • Online ISBN: 978-3-642-34922-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics