Skip to main content

H2 Blister Formation on Metallic Surfaces: A Candidate for Degradation Processes in Space

  • Chapter
  • First Online:
Advances in Solar Sailing

Part of the book series: Springer Praxis Books ((ASTROENG))

Abstract

H2-blisters are metal bubbles filled with hydrogen molecular gas resulting from recombination processes of protons in metal lattice. Bubble formation depends on many physical parameters, for instance: proton energy, proton flux, or the temperature of an exposed sample. Up to now no metallic sample that has been exposed to conditions prevalent in the interplanetary medium has been returned to Earth. Therefore, a direct evidence that blistering appears in space is missing. However, blistering is certainly a candidate of degradation processes which may occur in space. It could play an important role in the solar sail technology, where the performance of the sail is significantly affected by both the sail geometry but especially by optical properties of sail materials. Thus, both theoretical and laboratory studies of the blistering process have to be performed. The here presented model simulates the growth of molecular hydrogen bubbles on metallic surfaces. Additionally, it calculates the decrease of reflectivity of the by blistering degraded foils. First theoretical results show that the reflectivity of an Aluminum foil decreases by about 27 % for a bubble surface density of 1,500 cm−2 and an average bubble radius of 100 μm. Therefore, if blistering occurs, the propulsion performance of any sail-craft will be decreased by a significant factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alston S., “Theory of Electron Capture from a Hydrogenlike Ion by a Bare Ion: Intermediate-State Contributions to the Amplitude”, Physical Review A, Vol. 27, No. 5, 1983, pp. 2342-2357, doi: 10.1103/PhysRevA.27.2342,

    Google Scholar 

  2. Astrelin V. T. et al., „Blistering of the selected materials irradiated by intense 200 keV proton beam“, Journal of Nuclear Material, Vol. 396, No. 1, 2010, pp. 43-48, doi: 10.1016/j.jnucmat.2009.10.051

    Google Scholar 

  3. Canham L. T., Dyball M. R., Leong W. Y., Houlton M. R., Cullis A. G., Smith P. W., “Radiative Recombination Channels due to Hydrogen in Crystalline Silicon”, Vol. 4, No. 1-4, 1989, pp. 41-45, doi: 10.1016/0921-5107(89)90213-4

    Google Scholar 

  4. Dachwald B., Macdonald M., McInnes C. R., Mendali G., Quarta A. A., „Impact of Optical Degradation on Solar Sail Mission Performance“, Journal of Spacecraft and Rockets, Vol. 44, No. 4, 2007, pp. 740-749, doi: 10.2514/1.21432

    Google Scholar 

  5. Daniels R. D., “Correlation of Hydrogen Evolution with Surface Blistering in Proton-Irradiated Aluminium”, Journal of Applied Physics, Vol. 42, No. 1, 1971, pp. 417-419, doi: 10.1063/1.1659613

    Google Scholar 

  6. Echenique P. M., Flores F., “Inelastic Proton-Solid Collisions”, Physical Review B, Vol. 35, No. 15, 1987, pp. 8249-8251, doi: 10.1103/PhysRevB.35.8249

    Google Scholar 

  7. Guinea F., Flores F., Echenique P. M., “Charge States for H and He Moving in an Electron Gas”, Physical Review B, Vol. 25, No. 10, 1982, pp. 6109-6125, doi: 10.1103/PhysRevB.25.6109

    Google Scholar 

  8. Hagstrum D. “Theory of Auger Ejection of Electrons from Metals by Ions”, Vol. 96, No. 2, 1954, pp. 336-365, doi: 10.1103/PhysRev.96.336

    Google Scholar 

  9. Kuang Y. R., “Model-Potential Oppenheimer-Brikman-Kramers Approximation for K-shell Electron Capture in Asymmetric Collisions”, Physical Review A, Vol. 44, No. 3, 1991, pp. 1613-1619, doi: 10.1103/PhysRevA.44.1613

    Google Scholar 

  10. Landau L. D., Lifschitz M. J., Theory of Elasticity, 2nd ed., Pergamon Press, Oxford, 1970

    Google Scholar 

  11. Lautrup B., Physics of Continuous Matter, 2nd ed., Taylor & Francis Group, Baco Raton, Florida, USA, 2011

    Google Scholar 

  12. Lu G., Kaxiras E., “Hydrogen Embrittlement of Aluminium: The Crucial Role of Vacancies”, Physical Review Letters, Vol. 94, No. 15, 2005, pp. 155501-155504, doi: 10.1103/PhysRevLett.94.155501

    Google Scholar 

  13. Martynenko Yu. V., “The Theory of Blister Formation”, Radiation Effects, Vol. 45, 1979, pp. 93-102, doi: 10.1080/00337577908208414

    Google Scholar 

  14. Milacek L. H., Daniels R. D., Cooley J. A., “Proton-Radiation-Induced Blistering of Aluminum”, Journal of Applied Physics, Vol. 39, No. 6, 1967, pp. 2803-2816, doi: 10.1063/1.1656677

    Google Scholar 

  15. Milcius D., Pranevicius L. L., Templier C., “Hydrogen storage in the bubbles formed by high-flux ion implantation in thin Al films”, Journal of Alloys and Compounds, Vol. 398, No. 1, 2005, pp. 203-207, doi: 10.1016/j.jallcom.2005.02.003

    Google Scholar 

  16. Pauly N., Dubus A., Rösler M., „Electron Capture and Loss Processes for Protons in Aluminium: Comparison Between Conduction Band Electron-Hole Assisted and Plasmon Assisted Auger Processes”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 193, No. 1-4, 2002, pp. 414-418, doi: 10.1016/S0168-583X(02)00814-5

    Google Scholar 

  17. Penalba M., Anrau A., Echenique P. M., “Target Dependence of Electron-Capture and –Loss Cross Sections of Protons in Solids”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 48, No. 1-4, 1990, pp. 138-141, doi: 10.1016/0168-583X(90)90091-8

    Google Scholar 

  18. Primak W., “Facies of Ion Bombarded Bombarded Surfaces of Brittle Materials”, Solid State Science Division, 1975, Argonne National Laboratory, Argonne, Illinois 60439, USA

    Google Scholar 

  19. Raisbeck G., Yiou F., “Electron Capture by 40-, 155-, and 600-MeV Protons in Thin Foils of Mylar, Al, Ni, and Ta”, Physical Review A, Vol. 4, No. 5, 1971, pp. 1858-1868, doi: 10.1103/PhysRevA.4.1858

    Google Scholar 

  20. Ree F. H., Bender C. F., “Repulsive intermolecular potential between two H2 molecules”, Journal of Chemical Physics, Vol. 71, No. 12, 1979, pp. 5362-5376, doi: 10.1063/1.438349

    Google Scholar 

  21. Ren X., Chu W., Li J., Su Y., Qiao L., „The Effects of Inclusions and Second Phase Particles on Hydrogen-Induced Blistering in Iron”, Materials Chemistry and Physics, Vol. 107, No. 2-3, 2008, pp. 231-235, doi: 10.1016/j.matchemphys.2007.07.004

    Google Scholar 

  22. Rösler M., Garcia de Albo F. J., „Contribution of Charge-Transfer Processes to Ion-Induced Electron Emission”, Physical Review B, Vol. 54, No. 23, 1996, pp. 17158-17165, doi: 10.1103/PhysRevB.54.17158

    Google Scholar 

  23. Sols F., Flores F., “Charge Transfer Processes for Light Ions Moving in Metals”, Physical Review B, Vol. 30, No. 8, pp. 4878-4880, doi: 10.1103/PhysRevB.30.4878

    Google Scholar 

  24. Sznajder M., “Degradation studies of materials under space conditions; under special emphasize of recombination processes”, Ph.D. Dissertation, Institute of Physics and Astronomy, University of Zielona Góra, Poland, 2013

    Google Scholar 

  25. Thomas G. J., Drotning W. D., “Hydrogen Induced Lattice Expansion in Nickel”, Metallurgical Transactions A, Vol. 14, No. 8, 1983, pp. 1545-1548, doi: 10.1007/BF02654380

    Google Scholar 

  26. Ziegler J. F., SRIM Software, www.srim.org

    Google Scholar 

Download references

Acknowledgments

Maciej Sznajder is a scholar within Sub-measure 8.2.2 Regional Innovation Strategies, Measure 8.2 Transfer of knowledge, Priority VIII Regional human resources for the economy Human Capital Operational Programme co-financed by European Social Fund and state budget.

We are grateful to Martin Siemer for modeling the thermal behavior of a sail at 1 AU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Sznajder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sznajder, M., Geppert, U. (2014). H2 Blister Formation on Metallic Surfaces: A Candidate for Degradation Processes in Space. In: Macdonald, M. (eds) Advances in Solar Sailing. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34907-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34907-2_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34906-5

  • Online ISBN: 978-3-642-34907-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics