Skip to main content

Multicast Routing for Energy Minimization Using Speed Scaling

  • Conference paper
Design and Analysis of Algorithms (MedAlg 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7659))

Included in the following conference series:

Abstract

We consider virtual circuit multicast routing in a network of links that are speed scalable. We assume that a link with load f uses power σ + f α, where σ is the static power, and α > 1 is some constant. We assume that a link may be shutdown if not in use. In response to the arrival of client i at vertex t i a routing path (the virtual circuit) P i connecting a fixed source s to sink t i must be established. The objective is to minimize the aggregate power used by all links.

We give a polylog-competitive online algorithm, and a polynomial-time O(α)-approximation offline algorithm if the power functions of all links are the same. If each link can have a different power function, we show that the problem is APX-hard. If additionally, the edges may be directed, then we show that no poly-log approximation is possible in polynomial time under standard complexity assumptions. These are the first results on multicast routing in speed scalable networks in the algorithmic literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proceedings of the vision and roadmap workshop on routing telecom and data centers toward efficient energy use (October 2008)

    Google Scholar 

  2. Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with (dis)economies of scale. In: FOCS, pp. 585–592 (2010)

    Google Scholar 

  3. Andrews, M., Fernández, A., Zhang, L., Zhao, W.: Routing for energy minimization in the speed scaling model. In: INFOCOM, pp. 2435–2443 (2010)

    Google Scholar 

  4. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with applications to load balancing and machine scheduling. J. ACM 44(3), 486–504 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benoit, A., Melhem, R., Renaud-Goud, P., Robert, Y.: Power-aware manhattan routing on chip multiprocessors. In: IEEE International Parallel and Distributed Processing Symposium (IPDPS) (May 2012)

    Google Scholar 

  6. Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of Capacitated Network Design. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 78–91. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Gafni, E.M., Bertsekas, D.P.: Path assignment for virtual circuit routing. In: Proceedings of the Symposium on Communications Architectures & Protocols, SIGCOMM 1983, pp. 21–25. ACM, New York (1983)

    Chapter  Google Scholar 

  8. Gupta, A., Krishnaswamy, R., Pruhs, K.: Online primal-dual for non-linear optimization with applications to speed scaling. CoRR, abs/1109.5931 (2011)

    Google Scholar 

  9. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discrete Math. 4(3), 369–384 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson, W.B., Schechtman, G., Zinn, J.: Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. (1), 234–253 (1985)

    Google Scholar 

  11. Kim, J., Horowitz, M.A.: Adaptive supply serial links with sub-1-v operation and per-pin clock recovery. IEEE Journal of Solid-State Circuits 37(11), 1403–1413 (2002)

    Article  Google Scholar 

  12. Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rosenthal, H.P.: On the subspaces of L p (p > 2) spanned by sequences of independent random variables. Israel J. Math. 8, 273–303 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: ACM Symposium on Theory of Computing, pp. 453–461 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bansal, N., Gupta, A., Krishnaswamy, R., Nagarajan, V., Pruhs, K., Stein, C. (2012). Multicast Routing for Energy Minimization Using Speed Scaling. In: Even, G., Rawitz, D. (eds) Design and Analysis of Algorithms. MedAlg 2012. Lecture Notes in Computer Science, vol 7659. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34862-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34862-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34861-7

  • Online ISBN: 978-3-642-34862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics