Skip to main content

Seismic Anisotropy and Deformation in the Lowermost Mantle

  • Chapter
  • First Online:
  • 1005 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The D\(^{\prime \prime }\) region, which lies in the lowermost few hundred kilometres of the mantle, is a central cog in the Earth’s heat engine, influencing convection in the underlying core and overlying mantle. In recent years dense seismic networks have revealed a wealth of information about the seismic properties of this region, which are distinct from those of the mantle above. Here we review observations of seismic anisotropy in this region. In the past it has been assumed that the region exhibits a simple form of transverse isotropy with a vertical symmetry axis (VTI anisotropy). We summarise new methodologies for characterising a more general style of anisotropy using observations from a range of azimuths. The observations can be then used to constrain the mineralogy of the region and its style of deformation by a lattice preferred orientation (LPO) of the constituent minerals. Of specific interest is the recent discovery of the stability of the post-perovskite phase in this region, which might explain many enigmatic properties of D\(^{\prime \prime }\). Mantle flow models based on density models derived from global tomographic seismic velocity models can be used to test plausible mineralogies, such as post-perovskite, and their deformation mechanisms. Here we show how linked predictions from mineral physics, geodynamical modelling and seismic observations can be used to better constrain the dynamics, mineralogy and physical properties of the lowermost mantle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, D., & Oganov, A. (2006). Ab initio molecular dynamics study of CaSiO\(_3\) perovskite at \({P}\)-\({T}\) conditions of Earth’s lower mantle. Physical Review B, 73(18), 184106. doi: 10.1103/PhysRevB.73.184106.

    Article  Google Scholar 

  • Ammann, M. W., Brodholt, J. P., Wookey, J., & Dobson, D. P. (2010). First-principles constraints on diffusion in lower-mantle minerals and a weak D\(^{\prime \prime }\) layer. Nature, 465(7297), 462–465. doi: 10.1038/nature09052.

    Article  Google Scholar 

  • Andrault, D., Muñoz, M., Bolfan-Casanova, N., Guignot, N., Perrillat, J.-P., Aquilanti, G., et al. (2010). Experimental evidence for perovskite and post-perovskite coexistence throughout the whole D\(^{\prime \prime }\) region. Earth and Planetary Science Letters, 293(1–2), 90–96. doi: 10.1016/j.epsl.2010.02.026.

    Article  Google Scholar 

  • Becker, T. W., & Boschi, L. (2002). A comparison of tomographic and geodynamic mantle models. Geochemistry, Geophysics, Geosystems, 3, 1003. doi:10.1029/2001GC000168.

    Article  Google Scholar 

  • Bull, A. L., McNamara, A. K., Becker, T. W., & Ritsema, J. (2010). Global scale models of the mantle flow field predicted by synthetic tomography models. Physics of the Earth and Planetary Interiors, 182(3–4), 129–138. doi:10.1016/j.pepi.2010.03.004.

    Article  Google Scholar 

  • Bullen, K. (1940). The problem of the Earth’s density variation. Bulletin of the Seismological Society of America, 30(3), 235–250.

    Google Scholar 

  • Bullen, K. (1949). Compressibility-pressure hypothesis and the Earth’s interior. Monthly Notices of the Royal Astronomical Society. Geophysical Supplement, 5(9), 335–368. doi:10.1111/j.1365-246X.1949.tb02952.x.

    Article  Google Scholar 

  • Carrez, P., Ferré, D., & Cordier, P. (2007). Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO\(_3\) minerals. Nature, 446(7131), 68–70. doi: 10.1038/nature05593.

    Article  Google Scholar 

  • Carrez, P., Ferré, D., & Cordier, P. (2009). Peierls-Nabarro modelling of dislocations in MgO from ambient pressure to 100 GPa. Modelling and Simulation in Materials Science, 17(3), 035010. doi:10.1088/0965-0393/17/3/035010.

    Article  Google Scholar 

  • Catalli, K., Shim, S.-H., & Prakapenka, V. B. (2009). Thickness and Clapeyron slope of the post-perovskite boundary. Nature, 462(7274), 782–785. doi:10.1038/nature08598.

    Article  Google Scholar 

  • Chevrot, S. (2000). Multichannel analysis of shear wave splitting. Journal of Geophysical Research, [Solid Earth], 105(B9), 21579–21590.

    Google Scholar 

  • Cordier, P., Ungar, T., Zsoldos, L., & Tichy, G. (2004). Dislocation creep in MgSiO\(_3\) perovskite at conditions of the Earth’s uppermost lower mantle. Nature, 428(6985), 837–840. doi: 10.1038/nature02472.

    Article  Google Scholar 

  • Ding, X., & Helmberger, D. V. (1997). Modelling D\(^{\prime \prime }\) structure beneath Central America with broadband seismic data. Physics of the Earth and Planetary Interiors, 101(3–4), 245–270. doi: 10.1016/S0031-9201(97)00001-0.

    Article  Google Scholar 

  • Durham, W., Weidner, D., Karato, S., & Wang, Y. (2002). New developments in deformation experiments at high pressure. Reviews in Mineralogy and Geochemistry, 51, 21–49.

    Article  Google Scholar 

  • Dziewoński, A., & Anderson, D. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. doi:10.1016/0031-9201(81)90046-7.

    Article  Google Scholar 

  • Ford, S., Garnero, E. J., & McNamara, A. K. (2006). A strong lateral shear velocity gradient and anisotropy heterogeneity in the lowermost mantle beneath the southern Pacific. Journal of Geophysical Research, [Solid Earth], 111(B3), B03306. doi:10.1029/2004JB003574.

  • Fouch, M. J., Fischer, K. M., & Wysession, M. (2001). Lowermost mantle anisotropy beneath the Pacific: Imaging the source of the Hawaiian plume. Earth and Planetary Science Letters, 190(3–4), 167–180. doi:10.1016/S0012-821X(01)00380-6.

    Article  Google Scholar 

  • Fukao, Y. (1984). Evidence from core-reflected shear-waves for anisotropy in the Earth’s mantle. Nature, 309(5970), 695–698. doi:10.1038/309695a0.

    Article  Google Scholar 

  • Garnero, E. J. & Lay, T. (1997). Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska. Journal of Geophysical Research, [Solid Earth], 102(B4), 8121–8135. doi:10.1029/96JB03830.

    Google Scholar 

  • Garnero, E. J., & Lay, T. (2003). D\(^{\prime \prime }\) shear velocity heterogeneity, anisotropy and discontinuity structure beneath the Caribbean and Central America. Physics of the Earth and Planetary Interiors, 140(1–3), 219–242. doi: 10.1016/j.pepi.2003.07.014.

    Article  Google Scholar 

  • Garnero, E. J., Revenaugh, J., Williams, Q., Lay, T., & Kellogg, L. (1998). Ultralow velocity zone at the core-mantle boundary. In M. Gurnis, M. E. Wysession, E. Knittle, & B. A. Buffett (Eds.), The Core-Mantle Boundary Region, Geodynamics Series (pp. 319–334). Washington, D.C., USA: American Geophysical Union.

    Google Scholar 

  • Garnero, E. J., Maupin, V., Lay, T., & Fouch, M. J. (2004a). Variable azimuthal anisotropy in Earth’s lowermost mantle. Science, 306(5694), 259–261. doi:10.1126/science.1103411.

    Article  Google Scholar 

  • Garnero, E. J., Moore, M., Lay, T., & Fouch, M. J. (2004b). Isotropy or weak vertical transverse isotropy in D\(^{\prime \prime }\) beneath the Atlantic Ocean. Journal of Geophysical Research, [Solid Earth], 109(B8), B08308. doi:10.1029/2004JB003004.

  • Guignot, N., Andrault, D., Morard, G., Bolfan-Casanova, N., & Mezouar, M. (2007). Thermoelastic properties of post-perovskite phase MgSiO\(_3\) determined experimentally at core-mantle boundary \({P}\)-\({T}\) conditions. Earth and Planetary Science Letters, 256(1–2), 162–168. doi: 10.1016/j.epsl.2007.01.025.

    Article  Google Scholar 

  • Hall, S. & Kendall, J.-M. (2001). Constraining the interpretation of AVOA for fracture characterisation. In L. Ikelle & A. Gangi (Eds.), Anisotropy 2000: Fractures, Converted Waves, and Case Studies. Proceedings of 9th International Workshop on Seismic Anisotropy (9IWSA) (vol. 6 of Open File Publications, pp. 107–144). Tulsa, USA: Society of Exploration Geophysicists.

    Google Scholar 

  • Hall, S. A., Kendall, J. M., & der Baan, M. V. (2004). Some comments on the effects of lower-mantle anisotropy on SKS and SKKS phases. Physics of the Earth and Planetary Interiors, 146(3–4), 469–481. doi:10.1016/j.pepi.2004.05.002.

    Article  Google Scholar 

  • Hedlin, M., Shearer, P. M., & Earle, P. (1997). Seismic evidence for small-scale heterogeneity throughout the Earth’s mantle. Nature, 387(6629), 145–150. doi:10.1038/387145a0.

    Article  Google Scholar 

  • Hernlund, J. W. (2010). On the interaction of the geotherm with a post-perovskite phase transition in the deep mantle. Physics of the Earth and Planetary Interiors, 180(3–4), 222–234. doi:10.1016/j.pepi.2010.02.001.

    Article  Google Scholar 

  • Hernlund, J. W., Thomas, C., & Tackley, P. (2005). A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature, 434(7035), 882–886. doi:10.1038/nature03472.

    Article  Google Scholar 

  • Hirose, K. (2006). Postperovskite phase transition and its geophysical implications. Reviews of Geophysics, 44(3), RG3001. doi:10.1029/2005RG000186.

  • Hirose, K. (2007). Discovery of post-perovskite phase transition and the nature of D\(^{\prime \prime }\) layer. In K. Hirose, J. Brodholt, T. Lay & D. A. Yuen (Eds.), Post-Perovksite: The Last Mantle Phase Transition, Geophysical Monograph (pp. 19–35). Washington, D.C., USA: American Geophysical Union.

    Google Scholar 

  • Hirose, K., Fei, Y., Ma, Y., & Mao, H. (1999). The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397(6714), 53–56. doi:10.1038/16225.

    Article  Google Scholar 

  • Hirose, K., Takafuji, N., Sata, N., & Ohishi, Y. (2005). Phase transition and density of subducted MORB crust in the lower mantle. Earth and Planetary Science Letters, 237(1–2), 239–251. doi:10.1016/j.epsl.2005.06.035.

    Article  Google Scholar 

  • Hirose, K., Sinmyo, R., Sata, N., & Ohishi, Y. (2006). Determination of post-perovskite phase transition boundary in MgSiO\(_3\) using Au and MgO pressure standards. Geophysical Research Letters, 33(1), L01310. doi: 10.1029/2005GL024468.

    Article  Google Scholar 

  • Hirose, K., Nagaya, Y., Merkel, S., & Ohishi, Y. (2010). Deformation of MnGeO\(_3\) post-perovskite at lower mantle pressure and temperature. Geophysical Research Letters, 37(L20302), 1–5. doi:10.1029/2010GL044977.

  • Holtzman, B. K. & Kendall, J. M. (2010). Organized melt, seismic anisotropy, and plate boundary lubrication. Geochemistry, Geophysics, Geosystems, 11, Q0AB06. doi:10.1029/2010GC003296.

  • Holtzman, B. K., Groebner, N., Zimmerman, M. E., Ginsberg, S., & Kohlstedt, D. L. (2003a). Stress-driven melt segregation in partially molten rocks. Geochemistry, Geophysics, Geosystems, 4, 8607. doi:10.1029/2001GC000258.

    Article  Google Scholar 

  • Holtzman, B. K., Kohlstedt, D. L., Zimmerman, M. E., Heidelbach, F., Hiraga, T., & Hustoft, J. W. (2003b). Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 301(5637), 1227–1230. doi:10.1126/science.1087132.

    Article  Google Scholar 

  • Hudson, J. (1980a). Overall properties of a cracked solid. Mathematical Proceedings of the Cambridge Philosophical Society, 88, 371–384.

    Article  Google Scholar 

  • Hudson, J. (1980b). The excitation and propagation of elastic waves. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Iitaka, T., Hirose, K., Kawamura, K., & Murakami, M. (2004). The elasticity of the MgSiO\(_3\) post-perovskite phase in the Earth’s lowermost mantle. Nature, 430(6998), 442–445. doi: 10.1038/nature02702.

    Article  Google Scholar 

  • Karato, S. (1998). Some remarks on the origin of seismic anisotropy in the D\(^{\prime \prime }\) layer. Earth Planets Space, 50, 1019–1028.

    Google Scholar 

  • Karki, B. B., Stixrude, L., & Crain, J. (1997a). Ab initio elasticity of three high-pressure polymorphs of silica. Geophysical Research Letters, 24(24), 3269–3272. doi:10.1029/97GL53196.

    Article  Google Scholar 

  • Karki, B. B., Warren, M., Stixrude, L., Ackland, G., & Crain, J. (1997b). Ab initio studies of high-pressure structural transformations in silica. Physical Review B, 55(6), 3465–3471. doi:10.1103/PhysRevB.56.2884.

    Article  Google Scholar 

  • Karki, B. B., Wentzcovitch, R. M., de Gironcoli, S., & Baroni, S. (1999). First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science, 286(5445), 1705–1707. doi:10.1126/science.286.5445.1705.

    Article  Google Scholar 

  • Kawai, K., & Geller, R. J. (2010). The vertical flow in the lowermost mantle beneath the Pacific from inversion of seismic waveforms for anisotropic structure. Earth and Planetary Science Letters, 297(1–2), 190–198. doi:10.1016/j.epsl.2010.05.037.

    Article  Google Scholar 

  • Kendall, J. M., & Nangini, C. (1996). Lateral variations in D\(^{\prime \prime }\) below the Caribbean. Geophysical Research Letters, 23(4), 399–402. doi: 10.1029/95GL02659.

    Article  Google Scholar 

  • Kendall, J. M., & Silver, P. G. (1996). Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature, 381(6581), 409–412. doi:10.1038/381409a0.

    Article  Google Scholar 

  • Kendall, J.-M. & Silver, P. G. (1998). Investigating causes of D\(^{\prime \prime }\) anisotropy. In M. Gurnis, M. E. Wysession, E. Knittle & B. A. Buffett (Eds.), The Core-Mantle Boundary Region, Geodynamics Series (pp. 97–118). Washington, D.C., USA: American Geophysical Union.

    Google Scholar 

  • Kendall, J.-M. & Silver, P. G. (2000). Seismic anisotropy in the boundary layers of the mantle. In S. Karato, A. Forte, R. C. Liebermann, G. Masters & L. Stixrude (Eds.), Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (vol. 117 of Geophysical Monograph, pp. 133–159). Washington, D.C., USA: American Geophysical Union.

    Google Scholar 

  • Kennett, B., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from travel-times. Geophysical Journal International, 122(1), 108–124. doi:10.1111/j.1365-246X.1995.tb03540.x.

    Article  Google Scholar 

  • Kesson, S., Gerald, J. F., & Shelley, J. (1998). Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393(6682), 252–255. doi:10.1038/30466.

    Article  Google Scholar 

  • Knittle, E., & Jeanloz, R. (1987). Synthesis and equation of state of (Mg, Fe)SiO\(_3\) perovskite to over 100 gigapascals. Science, 235(4789), 668–670. doi: 10.1126/science.235.4789.668.

    Article  Google Scholar 

  • Koci, L., Vitos, L., & Ahuja, R. (2007). Ab initio calculations of the elastic properties of ferropericlase Mg\(_{1-x}\)Fe\(_x\)O (\(x \le 0.25\)). Physics of the Earth and Planetary Interiors, 164(3–4), 177–185. doi: 10.1016/j.pepi.2007.06.012.

    Article  Google Scholar 

  • Kohlstedt, D. L., & Zimmerman, M. E. (1996). Rheology of partially molten mantle rocks. Annual Review of Earth and Planetary Sciences, 24, 41–62. doi:10.1146/annurev.earth.24.1.41.

    Article  Google Scholar 

  • Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133–A1138. doi:10.1103/PhysRev.140.A1133.

    Article  Google Scholar 

  • Komabayashi, T., Hirose, K., Nagaya, Y., Sugimura, E., & Ohishi, Y. (2010). High-temperature compression of ferropericlase and the effect of temperature on iron spin transition. Earth and Planetary Science Letters, 297(3–4), 691–699. doi:10.1016/j.epsl.2010.07.025.

    Article  Google Scholar 

  • Komatitsch, D., Vinnik, L. P., & Chevrot, S. (2010). SHdiff-SVdiff splitting in an isotropic Earth. Journal of Geophysical Research, [Solid Earth], 115, B07312. doi:10.1029/2009JB006795.

    Article  Google Scholar 

  • Kubo, A., Kiefei, B., Shim, S.-H., Shen, G., Prakapenka, V. B., & Duffy, T. S. (2008). Rietveld structure refinement of MgGeO\(_3\) post-perovskite phase to 1 Mbar. American Mineralogist, 93(7), 965–976. doi: 10.2138/am.2008.2691.

    Article  Google Scholar 

  • Kustowski, B., Ekström, G., & Dziewoński, A. (2008). Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. Journal of Geophysical Research, [Solid Earth], 113(B6), B06306. doi:10.1029/2007JB005169.

  • Lay, T. & Helmberger, D. V. (1983). The shear-wave velocity-gradient at the base of the mantle. Journal of Geophysical Research, 88(NB10), 8160–8170. doi:10.1029/JB088iB10p08160.

    Google Scholar 

  • Lay, T., & Young, C. (1991). Analysis of seismic SV waves in the core’s penumbra. Geophysical Research Letters, 18(8), 1373–1376. doi:10.1029/91GL01691.

    Article  Google Scholar 

  • Lay, T., Williams, Q., Garnero, E. J., Kellogg, L., & Wysession, M. E. (1998). Seismic wave anisotropy in the D\(^{\prime \prime }\) region and its implications, In M. Gurnis, M. E. Wysession, E. Knittle, & B. A. Buffett (Eds.), The Core-Mantle Boundary Region, Geodynamics Series (vol. 28, pp. 299–318). Washington, D.C., USA: American Geophysical Union.

    Google Scholar 

  • Lebensohn, R., & Tomé, C. (1993). A self-consistent anisotropic approach for the simulation of plastic-deformation and texture development of polycrystals-application to zirconium alloys. Acta Metallurgica Et Materialia, 41, 2611–2624. doi:10.1016/0956-7151(93)90130-K.

    Article  Google Scholar 

  • Lekić, V., Panning, M., & Romanowicz, B. (2010). A simple method for improving crustal corrections in waveform tomography. Geophysical Journal International, 182(1), 265–278. doi:10.1111/j.1365-246X.2010.04602.x.

    Google Scholar 

  • Li, L., Weidner, D. J., Brodholt, J. P., Alfè, D., Price, G. D., Caracas, R., et al. (2006a). Elasticity of CaSiO\(_3\) perovskite at high pressure and high temperature. Physics of the Earth and Planetary Interiors, 155(3–4), 249–259. doi: 10.1016/j.pepi.2005.12.006.

    Article  Google Scholar 

  • Li, L., Weidner, D. J., Brodholt, J. P., Alfè, D., Price, G. D., Caracas, R., et al. (2006b). Phase stability of CaSiO\(_3\) perovskite at high pressure and temperature: Insights from ab initio molecular dynamics. Physics of the Earth and Planetary Interiors, 155(3–4), 260–268. doi: 10.1016/j.pepi.2005.12.007.

    Article  Google Scholar 

  • Lin, J.-F., & Tsuchiya, T. (2008). Spin transition of iron in the Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 170(3–4), 248–259. doi:10.1016/j.pepi.2008.01.005.

    Article  Google Scholar 

  • Lithgow-Bertelloni, C., & Richards, M. (1998). The dynamics of Cenozoic and Mesozoic plate motions. Reviews of Geophysics, 36(1), 27–78. doi:10.1029/97RG02282.

    Article  Google Scholar 

  • Long, M. D. (2009). Complex anisotropy in D\(^{\prime \prime }\) beneath the eastern pacific from SKS-SKKS splitting discrepancies. Earth and Planetary Science Letters, 283(1–4), 181–189. doi: 10.1016/j.epsl.2009.04.019.

    Article  Google Scholar 

  • Long, M. D., Xiao, X., Jiang, Z., Evans, B., & Karato, S. (2006). Lattice preferred orientation in deformed polycrystalline (Mg, Fe)O and implications for seismic anisotropy in D\(^{\prime \prime }\). Physics of the Earth and Planetary Interiors, 156(1–2), 75–88. doi: 10.1016/j.pepi.2006.02.006.

    Article  Google Scholar 

  • Mainprice, D., & Silver, P. (1993). Interpretation of SKS-waves using samples from the subcontinental lithosphere. Physics of the Earth and Planetary Interiors, 78(3–4), 257–280. doi:10.1016/0031-9201(93)90160-B.

    Article  Google Scholar 

  • Mainprice, D., Tommasi, A., Ferré, D., Carrez, P., & Cordier, P. (2008). Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle. Earth and Planetary Science Letters, 271(1–4), 135–144. doi:10.1016/j.epsl.2008.03.058.

    Article  Google Scholar 

  • Mao, W. L., Meng, Y., & Mao, H. (2010). Elastic anisotropy of ferromagnesian post-perovskite in Earth’s D\(^{\prime \prime }\) layer. Physics of the Earth and Planetary Interiors, 180(3–4), 203–208. doi: 10.1016/j.pepi.2009.10.013.

    Article  Google Scholar 

  • Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., & Schilling, F. R. (2009). Single-crystal elasticity of (Mg\(_{0.9}\)Fe\(_{0.1}\))O to 81 GPa. Earth and Planetary Science Letters, 287(3–4), 345–352. doi: 10.1016/j.epsl.2009.08.017.

    Article  Google Scholar 

  • Matzel, E., Sen, M., & Grand, S. P. (1996). Evidence for anisotropy in the deep mantle beneath Alaska. Geophysical Research Letters, 23(18), 2417–2420. doi:10.1029/96GL02186.

    Article  Google Scholar 

  • Maupin, V. (1994). On the possibility of anisotropy in the D\(^{\prime \prime }\) layer as inferred from the polarization of diffracted S waves. Physics of the Earth and Planetary Interiors, 87(1–2), 1–32. doi: 10.1016/0031-9201(94)90019-1.

    Article  Google Scholar 

  • Maupin, V., Garnero, E. J., Lay, T., & Fouch, M. J. (2005). Azimuthal anisotropy in the D\(^{\prime \prime }\) layer beneath the Caribbean. Journal of Geophysical Research, [Solid Earth], 110(B8), B08301. doi:10.1029/2004JB003506.

  • McDonough, W., & Sun, S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253.

    Article  Google Scholar 

  • McNamara, A. K., van Keken, P., & Karato, S. (2003). Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy. Journal of Geophysical Research, [Solid Earth], 108(B5), 2230. doi:10.1029/2002JB001970.

  • Meade, C., Silver, P. G., & Kaneshima, S. (1995). Laboratory and seismological observations of lower mantle isotropy. Geophysical Research Letters, 22(10), 1293–1296. doi:10.1029/95GL01091.

    Article  Google Scholar 

  • Merkel, S., Wenk, H.-R., Shu, J., Shen, G., Gillet, P., Mao, H., & Hemley, R. (2002). Deformation of polycrystalline MgO at pressures of the lower mantle. Journal of Geophysical Research, [Solid Earth], 107(B11), 2271. doi:10.1029/2001JB000920.

  • Merkel, S., Wenk, H.-R., Badro, J., Montagnac, G., Gillet, P., Mao, H., et al. (2003). Deformation of (Mg\(_{0.9}\), Fe\(_{0.1}\))SiO\(_3\) Perovskite aggregates up to 32 GPa. Earth Planet Sci Lett, 209(3–4), 351–360. doi: 10.1016/S0012-821X(03)00098-0.

    Article  Google Scholar 

  • Merkel, S., Kubo, A., Miyagi, L., Speziale, S., Duffy, T. S., Mao, H., et al. (2006). Plastic deformation of MgGeO\(_3\) post-perovskite at lower mantle pressures. Science, 311(5761), 644–646. doi: 10.1126/science.1121808.

    Article  Google Scholar 

  • Merkel, S., McNamara, A. K., Kubo, A., Speziale, S., Miyagi, L., Meng, Y., et al. (2007). Deformation of (Mg, Fe)SiO\(_3\) post-perovskite and D\(^{\prime \prime }\) anisotropy. Science, 316(5832), 1729–1732. doi: 10.1126/science.1140609.

    Article  Google Scholar 

  • Metsue, A., Carrez, P., Mainprice, D., & Cordier, P. (2009). Numerical modelling of dislocations and deformation mechanisms in CaIrO\(_3\) and MgGeO\(_3\) post-perovskites-Comparison with MgSiO\(_3\) post-perovskite. Physics of the Earth and Planetary Interiors, 174(1–4), 165–173. doi: 10.1016/j.pepi.2008.04.003.

    Article  Google Scholar 

  • Mitrovica, J. X., & Forte, A. M. (2004). A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth and Planetary Science Letters, 225(1–2), 177–189. doi:10.1016/j.epsl.2004.06.005.

    Article  Google Scholar 

  • Miyagi, L., Nishiyama, N., Wang, Y., Kubo, A., West, D. V., Cava, R. J., et al. (2008). Deformation and texture development in CaIrO\(_3\) post-perovskite phase up to 6 GPa and 1300 K. Earth and Planetary Science Letters, 268(3–4), 515–525. doi: 10.1016/j.epsl.2008.02.005.

    Article  Google Scholar 

  • Miyagi, L., Kanitpanyacharoen, W., Kaercher, P., Lee, K. K. M., & Wenk, H.-R. (2010). Slip systems in MgSiO\(_3\) post-perovskite: Implications for D\(^{\prime \prime }\) anisotropy. Science, 329(5999), 1639–1641. doi: 10.1126/science.1192465.

    Article  Google Scholar 

  • Montagner, J.-P., & Kennett, B. (1996). How to reconcile body-wave and normal-mode reference earth models. Geophysical Journal International, 125(1), 229–248. doi:10.1111/j.1365-246X.1996.tb06548.x.

    Article  Google Scholar 

  • Montelli, R., Nolet, G., Dahlen, F., Masters, G., Engdahl, E., & Hung, S. (2004). Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656), 338–343. doi:10.1126/science.1092485.

    Article  Google Scholar 

  • Moore, M., Garnero, E. J., Lay, T., & Williams, Q. (2004). Shear wave splitting and waveform complexity for lowermost mantle structures with low-velocity lamellae and transverse isotropy. Journal of Geophysical Research, [Solid Earth], 109(B2), B02319. doi:10.1029/2003JB002546.

  • Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, Y. (2004). Post-perovskite phase transition in MgSiO\(_3\). Science, 304(5672), 855–858. doi: 10.1126/science.1095932.

    Article  Google Scholar 

  • Murakami, M., Hirose, K., Sata, N., & Ohishi, Y. (2005). Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophysical Research Letters, 32(3), L03304. doi:10.1029/2004GL021956.

    Article  Google Scholar 

  • Niu, F., & Perez, A. (2004). Seismic anisotropy in the lower mantle: A comparison of waveform splitting of SKS and SKKS. Geophysical Research Letters, 31(24), L24612. doi:10.1029/2004GL021196.

    Article  Google Scholar 

  • Niwa, K., Yagi, T., Ohgushi, K., Merkel, S., Miyajima, N., & Kikegawa, T. (2007). Lattice preferred orientation in CaIrO\(_3\) perovskite and post-perovskite formed by plastic deformation under pressure. Physics and Chemistry of Minerals, 34(9), 679–686. doi: 10.1007/s00269-007-0182-6.

    Article  Google Scholar 

  • Nowacki, A., Wookey, J., & Kendall, J. M. (2010). Deformation of the lowermost mantle from seismic anisotropy. Nature, 467(7319), 1091–1095. doi:10.1038/nature09507.

    Article  Google Scholar 

  • Nye, J. (1985). Physical properties of crystals: Their representation by tensors and matrices. Oxford, UK: Oxford Science Publications, Oxford University Press.

    Google Scholar 

  • Oganov, A., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO\(_3\) in Earth’s D\(^{\prime \prime }\) layer. Nature, 430(6998), 445–448. doi: 10.1038/nature02701.

    Article  Google Scholar 

  • Oganov, A., Brodholt, J. P., & Price, G. D. (2001). The elastic constants of MgSiO\(_3\) perovskite at pressures and temperatures of the Earth’s mantle. Nature, 411(6840), 934–937. doi: 10.1038/35082048.

    Article  Google Scholar 

  • Oganov, A., Martonak, R., Laio, A., Raiteri, P., & Parrinello, M. (2005). Anisotropy of Earth’s D\(^{\prime \prime }\) layer and stacking faults in the MgSiO\(_3\) post-perovskite phase. Nature, 438(7071), 1142–1144. doi: 10.1038/nature04439.

    Article  Google Scholar 

  • Ohta, K., Hirose, K., Lay, T., Sata, N., & Ohishi, Y. (2008). Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core-mantle boundary. Earth and Planetary Science Letters, 267(1–2), 107–117. doi:10.1016/j.epsl.2007.11.037.

    Article  Google Scholar 

  • Ohtani, E., & Sakai, T. (2008). Recent advances in the study of mantle phase transitions. Physics of the Earth and Planetary Interiors, 170(3–4), 240–247. doi:10.1016/j.pepi.2008.07.024.

    Article  Google Scholar 

  • Okada, T., Yagi, T., Niwa, K., & Kikegawa, T. (2010). Lattice-preferred orientations in post-perovskite-type MgGeO\(_3\) formed by transformations from different pre-phases. Physics of the Earth and Planetary Interiors, 180(3–4), 195–202. doi: 10.1016/j.pepi.2009.08.002.

    Article  Google Scholar 

  • Ono, S., & Oganov, A. (2005). In situ observations of phase transition between perovskite and CaIrO\(_3\)-type phase in MgSiO\(_3\) and pyrolitic mantle composition. Earth and Planetary Science Letters, 236(3–4), 914–932. doi: 10.1016/j.epsl.2005.06.001.

    Article  Google Scholar 

  • Ono, S., Ito, E., & Katsura, T. (2001). Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth and Planetary Science Letters, 190(1–2), 57–63. doi:10.1016/S0012-821X(01)00375-2.

    Article  Google Scholar 

  • Panning, M., & Romanowicz, B. (2004). Inferences on flow at the base of Earth’s mantle based on seismic anisotropy. Science, 303(5656), 351–353. doi:10.1126/science.1091524.

    Article  Google Scholar 

  • Panning, M., & Romanowicz, B. (2006). A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal International, 167(1), 361–379. doi:10.1111/j.1365-246X.2006.03100.x.

    Article  Google Scholar 

  • Perdew, J. P. & Ruzsinszky, A. (2010). Density functional theory of electronic structure: A short course for mineralogists and geophysicists. In R. Wentzcovitch & L. Stixrude (Eds.), Theoretical and Computational Methods in Mineral Physics: Geophysical Applications (vol. 71 of Reviews in Mineralogy & Geochemistry) (pp. 1–18). Chantilly, VA, USA: Mineralogical Society of America.

    Google Scholar 

  • Pulliam, J., & Sen, M. (1998). Seismic anisotropy in the core-mantle transition zone. Geophysical Journal International, 135(1), 113–128. doi:10.1046/j.1365-246X.1998.00612.x.

    Article  Google Scholar 

  • Restivo, A., & Helffrich, G. (2006). Core-mantle boundary structure investigated using SKS and SKKS polarization anomalies. Geophysical Journal International, 165(1), 288–302. doi:10.1111/j.1365-246X.2006.02901.x.

    Article  Google Scholar 

  • Ricolleau, A., Fei, Y., Cottrell, E., Watson, H., Deng, L., Zhang, L., et al. (2009). Density profile of pyrolite under the lower mantle conditions. Geophysical Research Letters, 36, L06302. doi:10.1029/2008GL036759.

    Article  Google Scholar 

  • Ringwood, A. (1962). A model for the upper mantle. Journal of Geophysical Research, 67(2), 857–867. doi:10.1029/JZ067i002p00857.

    Article  Google Scholar 

  • Ritsema, J. (2000). Evidence for shear velocity anisotropy in the lowermost mantle beneath the Indian Ocean. Geophysical Research Letters, 27(7), 1041–1044. doi:10.1029/1999GL011037.

    Article  Google Scholar 

  • Ritsema, J., Lay, T., Garnero, E. J., & Benz, H. (1998). Seismic anisotropy in the lowermost mantle beneath the Pacific. Geophysical Research Letters, 25(8), 1229–1232. doi:10.1029/98GL00913.

    Article  Google Scholar 

  • Ritsema, J., van Heijst, H. J., & Woodhouse, J. H. (1999). Complex shear wave velocity structure imaged beneath Africa and Iceland. Science, 286(5446), 1925–1928. doi:10.1126/science.286.5446.1925.

    Article  Google Scholar 

  • Rokosky, J. M., Lay, T., Garnero, E. J., & Russell, S. (2004). High-resolution investigation of shear wave anisotropy in D\(^{\prime \prime }\) beneath the Cocos Plate. Geophysical Research Letters, 31(7), L07605. doi: 10.1029/2003GL018902.

    Article  Google Scholar 

  • Rokosky, J. M., Lay, T., & Garnero, E. J. (2006). Small-scale lateral variations in azimuthally anisotropic D\(^{\prime \prime }\) structure beneath the Cocos Plate. Earth and Planetary Science Letters, 248(1–2), 411–425. doi: 10.1016/j.epsl.2006.06.005.

    Article  Google Scholar 

  • Royer, D., & Dieulesaint, E. (2000). Elastic waves in solids I: Free and guided propagation, Advanced texts in physics. Heidelberg: Springer.

    Google Scholar 

  • Rümpker, G., Tommasi, A., & Kendall, J.-M. (1999). Numerical simulations of depth-dependent anisotropy and frequency-dependent wave propagation effects. Journal of Geophysical Research, [Solid Earth], 104, 23141–23153. doi:10.1029/1999JB900203.

    Article  Google Scholar 

  • Russell, S., Lay, T., & Garnero, E. J. (1998). Seismic evidence for small-scale dynamics in the lowermost mantle at the root of the Hawaiian hotspot. Nature, 396(6708), 255–258. doi:10.1038/24364.

    Article  Google Scholar 

  • Russell, S., Lay, T., & Garnero, E. J. (1999). Small-scale lateral shear velocity and anisotropy heterogeneity near the core-mantle boundary beneath the central Pacific imaged using broadband ScS waves. Journal of Geophysical Research, [Solid Earth], 104(B6), 13183–13199, doi:10.1029/1999JB900114.

    Google Scholar 

  • Savage, M. (1999). Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37(1), 65–106. doi:10.1029/98RG02075.

    Article  Google Scholar 

  • Sayers, C. (1992). Elastic anisotropy of short-fibre reinforced composites. International Journal of Solids Structures, 100, 4149–4156. doi:10.1016/0020-7683(92)90150-R.

    Google Scholar 

  • Shim, S.-H. (2008). The postperovskite transition. Annual Review of Earth and Planetary Sciences, 36, 569–599. doi:10.1146/annurev.earth.36.031207.124309.

    Article  Google Scholar 

  • Silver, P. G. & Chan, W. W. (1991). Shear-wave splitting and subcontinental mantle deformation. Journal of Geophysical Research, [Solid Earth], 96(B10), 16429–16454. doi:10.1029/91JB00899.

    Google Scholar 

  • Silver, P. G., & Savage, M. (1994). The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophysical Journal International, 119(3), 949–963. doi:10.1111/j.1365-246X.1994.tb04027.x.

    Article  Google Scholar 

  • Simmons, N. A., Forte, A. M., & Grand, S. P. (2009). Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity. Geophysical Journal International, 177(3), 1284–1304. doi:10.1111/j.1365-246X.2009.04133.x.

    Article  Google Scholar 

  • Sinmyo, R., Hirose, K., Nishio-Hamane, D., Seto, Y., Fujino, K., Sata, N., & Ohishi, Y. (2008). Partitioning of iron between perovskite/postperovskite and ferropericlase in the lower mantle. Journal of Geophysical Research, [Solid Earth], 113(B11), B11204. doi:10.1029/2008JB005730.

  • Speziale, S., Zha, C., Duffy, T., Hemley, R., & Mao, H. (2001). Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state. Journal of Geophysical Research, [Solid Earth], 106, 515–528. doi:10.1029/2000JB900318.

    Article  Google Scholar 

  • Stackhouse, S., Brodholt, J. P., & Price, G. D. (2005a). High temperature elastic anisotropy of the perovskite and post-perovskite Al\(_2\)O\(_3\). Geophysical Research Letters, 32(13), L13305. doi: 10.1029/2005GL023163.

    Article  Google Scholar 

  • Stackhouse, S., Brodholt, J. P., Wookey, J., Kendall, J. M., & Price, G. D. (2005b). The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO\(_3\). Earth and Planetary Science Letters, 230(1–2), 1–10. doi: 10.1016/j.epsl.2004.11.021.

    Article  Google Scholar 

  • Stackhouse, S., Brodholt, J. P., & Price, G. D. (2006). Elastic anisotropy of FeSiO\(_3\) end-members of the perovskite and post-perovskite phases. Geophysical Research Letters, 33(1), L01304. doi: 10.1029/2005GL023887.

    Article  Google Scholar 

  • Stixrude, L., Lithgow-Bertelloni, C., Kiefer, B., & Fumagalli, P. (2007). Phase stability and shear softening in CaSiO\(_3\) perovskite at high pressure. Physical Review B, 75(2), 024108. doi: 10.1103/PhysRevB.75.024108.

    Article  Google Scholar 

  • Stixrude, L., de Koker, N., Sun, N., Mookherjee, M., & Karki, B. B. (2009). Thermodynamics of silicate liquids in the deep Earth. Earth and Planetary Science Letters, 278(3–4), 226–232. doi:10.1016/j.epsl.2008.12.006.

    Article  Google Scholar 

  • Tackley, P. (2000). Mantle convection and plate tectonics: Toward an integrated physical and chemical theory. Science, 288(5473), 2002–2007. doi:10.1126/science.288.5473.2002.

    Article  Google Scholar 

  • Tanaka, S. (2010). Constraints on the core-mantle boundary topography from P4KP-PcP differential travel times. Journal of Geophysical Research, [Solid Earth], 115, B04310. doi:10.1029/2009JB006563.

    Article  Google Scholar 

  • Tandon, G., & Weng, G. (1984). The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polymer Composite, 5(4), 327–333. doi:10.1002/pc.750050413.

    Article  Google Scholar 

  • Tateno, S., Hirose, K., Sata, N., & Ohishi, Y. (2009). Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D\(^{\prime \prime }\) layer. Earth and Planetary Science Letters, 277(1–2), 130–136. doi: 10.1016/j.epsl.2008.10.004.

    Article  Google Scholar 

  • Teanby, N., Kendall, J. M., & der Baan, M. V. (2004). Automation of shear-wave splitting measurements using cluster analysis. Bulletin of the Seismological Society of America, 94(2), 453–463. doi:10.1785/0120030123.

    Article  Google Scholar 

  • Thomas, C., & Kendall, J. M. (2002). The lowermost mantle beneath northern Asia—II. Evidence for lower-mantle anisotropy. Geophysical Journal International, 151(1), 296–308. doi:10.1046/j.1365-246X.2002.01760.x.

    Article  Google Scholar 

  • Thomas, C., Wookey, J., & Simpson, M. (2007). D\(^{\prime \prime }\) anisotropy beneath Southeast Asia. Geophysical Research Letters, 34(4), L04301. doi: 10.1029/2006GL028965.

    Article  Google Scholar 

  • Thomsen, L. (1986). Weak elastic anisotropy. Geophysics, 51(10), 1954–1966. doi:10.1190/1.1442051.

    Article  Google Scholar 

  • Tikoff, B., & Fossen, H. (1999). Three-dimensional reference deformations and strain facies. Journal of Structural Geology, 21, 1497–1512. doi:10.1016/S0191-8141(99)00085-1.

    Article  Google Scholar 

  • Trampert, J., Deschamps, F., Resovsky, J., & Yuen, D. A. (2004). Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306(5697), 853–856. doi:10.1126/science.1101996.

    Article  Google Scholar 

  • Tromp, J. (2001). Inner-core anisotropy and rotation. Annual Review of Earth and Planetary Sciences, 29, 47–69. doi:10.1146/annurev.earth.29.1.47.

    Article  Google Scholar 

  • Trønnes, R. G. (2010). Structure, mineralogy and dynamics of the lowermost mantle. Mineralogy and Petrology, 99(3–4), 243–261. doi:10.1007/s00710-009-0068-z.

    Article  Google Scholar 

  • Tsuchiya, T. (2003). First-principles prediction of the \({P}\)-\({V}\)-\({T}\) equation of state of gold and the 660-km discontinuity in Earth’s mantle. Journal of Geophysical Research, [Solid Earth], 108(B10), 2462. doi: 10.1029/2003JB002446.

  • Tsuchiya, T., Tsuchiya, J., Umemoto, K., & Wentzcovitch, R. M. (2004). Phase transition in MgSiO\(_3\) perovskite in the earth’s lower mantle. Earth and Planetary Science Letters, 224(3–4), 241–248. doi: 10.1016/j.epsl.2004.05.017.

    Article  Google Scholar 

  • Usui, Y., Hiramatsu, Y., Furumoto, M., & Kanao, M. (2008). Evidence of seismic anisotropy and a lower temperature condition in the D\(^{\prime \prime }\) layer beneath Pacific Antarctic Ridge in the Antarctic Ocean. Physics of the Earth and Planetary Interiors, 167(3–4), 205–216. doi: 10.1016/j.pepi.2008.04.006.

    Article  Google Scholar 

  • Vinnik, L. P., Kind, R., Kosarev, G., & Makeyeva, L. (1989). Azimuthal anisotropy in the lithosphere from observations of long-period S-waves. Geophysical Journal International, 99(3), 549–559. doi:10.1111/j.1365-246X.1989.tb02039.x.

    Article  Google Scholar 

  • Vinnik, L. P., Romanowicz, B., Stunff, Y. L., & Makeyeva, L. (1995). Seismic anisotropy in the D\(^{\prime \prime }\) layer. Geophysical Research Letters, 22(13), 1657–1660. doi: 10.1029/95GL01327.

    Article  Google Scholar 

  • Vinnik, L. P., Breger, L., & Romanowicz, B. (1998). Anisotropic structures at the base of the Earth’s mantle. Nature, 393(6685), 564–567. doi:10.1038/31208.

    Article  Google Scholar 

  • Walker, A., Carrez, P., & Cordier, P. (2010). Atomic-scale models of dislocation cores in minerals: Progress and prospects. Mineralogical Magazine, 74(3), 381–413. doi:10.1180/minmag.2010.074.3.381.

    Article  Google Scholar 

  • Walte, N. P., Heidelbach, F., Miyajima, N., & Frost, D. J. (2007). Texture development and TEM analysis of deformed CaIrO\(_3\): Implications for the D\(^{\prime \prime }\) layer at the core-mantle boundary. Geophysical Research Letters, 34(8), L08306. doi: 10.1029/2007GL029407.

    Article  Google Scholar 

  • Walte, N. P., Heidelbach, F., Miyajima, N., Frost, D. J., Rubie, D. C., & Dobson, D. P. (2009). Transformation textures in post-perovskite: Understanding mantle flow in the D\(^{\prime \prime }\) layer of the Earth. Geophysical Research Letters, 36, L04302. doi: 10.1029/2008GL036840.

    Article  Google Scholar 

  • Wang, Y. & Wen, L. (2007). Complex seismic anisotropy at the border of a very low velocity province at the base of the Earth’s mantle. Journal of Geophysical Research, [Solid Earth], 112(B9), B09305. doi:10.1029/2006JB004719.

  • Wenk, H.-R., Bennett, K., Canova, G., & Molinari, A. (1991). Modeling plastic-deformation of peridotite with the self-consistent theory. Journal of Geophysical Research-Solid Earth and Planets, 96, 8337–8349. doi:10.1029/91JB00117.

    Article  Google Scholar 

  • Wenk, H.-R., Speziale, S., McNamara, A. K., & Garnero, E. J. (2006). Modeling lower mantle anisotropy development in a subducting slab. Earth and Planetary Science Letters, 245(1–2), 302–314. doi:10.1016/j.epsl.2006.02.028.

    Article  Google Scholar 

  • Wentzcovitch, R. M., Karki, B. B., Cococcioni, M., & de Gironcoli, S. (2004). Thermoelastic properties of MgSiO\(_3\)-perovskite: Insights on the nature of the Earth’s lower mantle. Physical Review Letters, 92(1), 018501. doi: 10.1103/PhysRevLett.92.018501.

    Article  Google Scholar 

  • Wentzcovitch, R. M., Tsuchiya, T., & Tsuchiya, J. (2006). MgSiO\(_3\) postperovskite at D\(^{\prime \prime }\) conditions. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 543–546. doi: 10.1073/pnas.0506879103.

    Article  Google Scholar 

  • Wookey, J., & Kendall, J.-M. (2007). Seismic anisotropy of post-perovskite and the lowermost mantle. In K. Hirose, J. Brodholt, T. Lay & D. A. Yuen (Eds.), Post-perovksite: The last mantle phase transition (vol. 174, pp. 171–189). Washington, D.C., USA: American Geophysical Union Geophysical Monograph.

    Google Scholar 

  • Wookey, J., & Kendall, J. M. (2008). Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy. Earth and Planetary Science Letters, 275(1–2), 32–42. doi:10.1016/j.epsl.2008.07.049.

    Article  Google Scholar 

  • Wookey, J., Kendall, J. M., & Rümpker, G. (2005). Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting. Geophysical Journal International, 161(3), 829–838. doi:10.1111/j.1365-246X.2005.02623.x.

    Article  Google Scholar 

  • Wookey, J., Stackhouse, S., Kendall, J. M., Brodholt, J. P., & Price, G. D. (2005b). Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature, 438(7070), 1004–1007. doi:10.1038/nature04345.

    Article  Google Scholar 

  • Wysession, M., Langenhorst, A., Fouch, M. J., Fischer, K. M., Al-Eqabi, G., Shore, P., et al. (1999). Lateral variations in compressional/shear velocities at the base of the mantle. Science, 284(5411), 120–125. doi:10.1126/science.284.5411.120.

    Article  Google Scholar 

  • Wysession, M. E., Lay, T., Revenaugh, J., Williams, Q., Garnero, E. J., Jeanloz, R., & Kellogg, L. (1998). The D\(^{\prime \prime }\) discontinuity and its implications. In M. Gurnis, M. E. Wysession, E. Knittle & B. A. Buffett (Eds.), The core-mantle boundary region, geodynamics series (pp. 273–298). Washington, D.C., USA: American Geophysical Union.

    Google Scholar 

  • Yamazaki, D., & Karato, S. (2002). Fabric development in (Mg, Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 131(3–4), 251–267. doi:10.1016/S0031-9201(02)00037-7.

    Article  Google Scholar 

  • Yamazaki, D., & Karato, S. (2007). Lattice-preferred orientation of lower mantle materials and seismic anisotropy in the D\(^{\prime \prime }\) layer. Post-perovksite: The last mantle phase transition, geophysical monograph (pp. 69–78). Washington, D.C., USA: American Geophysical Union.

    Google Scholar 

  • Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J., & Yoneda, A. (2006). Origin of seismic anisotropy in the D\(^{\prime \prime }\) layer inferred from shear deformation experiments on post-perovskite phase. Earth and Planetary Science Letters, 252(3–4), 372–378. doi: 10.1016/j.epsl.2006.10.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Nowacki .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nowacki, A. (2013). Seismic Anisotropy and Deformation in the Lowermost Mantle. In: Plate Deformation from Cradle to Grave. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34842-6_2

Download citation

Publish with us

Policies and ethics