Skip to main content

Fast Permutation Learning

  • Conference paper
Learning and Intelligent Optimization (LION 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7219))

Included in the following conference series:

Abstract

Permutations occur in a great variety of optimization problems, such as routing, scheduling and assignment problems. The present paper introduces the use of learning automata for the online learning of good quality permutations. Several centralized and decentralized methods using individual and common rewards are presented. The performance, memory requirement and scalability of the presented methods is analyzed. Results on well known benchmark problems show interesting properties. It is also demonstrated how these techniques are successfully applied to multi-project scheduling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. School of Computer Science, Carnegie Mellon University (1994)

    Google Scholar 

  2. Baluja, S., Davies, S.: Fast probabilistic modeling for combinatorial optimization. In: Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAI 1998/IAAI 1998, pp. 469–476. American Association for Artificial Intelligence, Menlo Park (1998), http://dl.acm.org/citation.cfm?id=295240.295718

    Google Scholar 

  3. Blazewicz, J., Lenstra, J., Rinnooy Kan, A.: Scheduling subject to resource constraints: classification and complexity. Discrete Applied Mathematics 5, 11–24 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Confessore, G., Giordani, S., Rismondo, S.: An auction based approach in decentralized project scheduling. In: Proc. of PMS 2002 International Workshop on Project Management and Scheduling, Valencia, pp. 110–113 (2002)

    Google Scholar 

  5. Confessore, G., Giordani, S., Rismondo, S.: A market-based multi-agent system model for decentralized multi-project scheduling. Annals of Operational Research 150, 115–135 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grenager, T., Powers, R., Shoham, Y.: Dispersion games: general definitions and some specific learning results (2002), http://citeseer.ist.psu.edu/grenager02dispersion.html

  7. Helmbold, D.P., Warmuth, M.K.: Learning permutations with exponential weights. Journal of Machine Learning Research 10, 1705–1736 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Homberger, J.: A multi-agent system for the decentralized resource-constrained multi-project scheduling problem. International Transactions in Operational Research 14, 565–589 (2007)

    Article  MATH  Google Scholar 

  9. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley (1973)

    Google Scholar 

  10. Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. European Journal of Operational Research 90, 320–333 (1996)

    Article  MATH  Google Scholar 

  11. Narendra, K., Thathachar, M.: Learning Automata: An Introduction. Prentice-Hall International, Inc. (1989)

    Google Scholar 

  12. Thathachar, M., Ramakrishnan, K.: A hierarchical system of learning automata. IEEE Transactions On Systems, Man, and Cybernetics 11(3), 236–241 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Thathachar, M., Sastry, P.: Networks of Learning Automata: Techniques for Online Stochastic Optimization. Kluwer Academic Publishers (2004)

    Google Scholar 

  14. Wauters, T., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A game theoretic approach to decentralized multi-project scheduling (extended abstract). In: Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010), No. R24 (2010)

    Google Scholar 

  15. Wauters, T., Verbeeck, K., Van den Berghe, G., De Causmaecker, P.: Learning agents for the multi-mode project scheduling problem. Journal of the Operational Research Society 62(2), 281–290 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wauters, T., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G. (2012). Fast Permutation Learning. In: Hamadi, Y., Schoenauer, M. (eds) Learning and Intelligent Optimization. LION 2012. Lecture Notes in Computer Science, vol 7219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34413-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34413-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34412-1

  • Online ISBN: 978-3-642-34413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics