Skip to main content

Efficient Protocols for Distributed Classification and Optimization

  • Conference paper
Algorithmic Learning Theory (ALT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7568))

Included in the following conference series:

Abstract

A recent paper [1] proposes a general model for distributed learning that bounds the communication required for learning classifiers with ε error on linearly separable data adversarially distributed across nodes. In this work, we develop key improvements and extensions to this basic model. Our first result is a two-party multiplicative-weight-update based protocol that uses O(d 2 log1/ε) words of communication to classify distributed data in arbitrary dimension d, ε-optimally. This extends to classification over k nodes with O(kd 2 log1/ε) words of communication. Our proposed protocol is simple to implement and is considerably more efficient than baselines compared, as demonstrated by our empirical results.

In addition, we show how to solve fixed-dimensional and high-dimensional linear programming with small communication in a distributed setting where constraints may be distributed across nodes. Our techniques make use of a novel connection from multipass streaming, as well as adapting the multiplicative- weight-update framework more generally to a distributed setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daumé III, H., Phillips, J., Saha, A., Venkatasubramanian, S.: Protocols for learning classifiers on distributed data. In: AISTATS 2012 (2012)

    Google Scholar 

  2. Bekkerman, R., Bilenko, M., Langford, J. (eds.): Scaling up Machine Learning: Parallel and Distributed Approaches. Cambridge University Press (2011)

    Google Scholar 

  3. McDonald, R., Hall, K., Mann, G.: Distributed training strategies for the structured perceptron. In: NAACL HLT (2010)

    Google Scholar 

  4. Mann, G., McDonald, R., Mohri, M., Silberman, N., Walker, D.: Efficient large-scale distributed training of conditional maximum entropy models. In: NIPS (2009)

    Google Scholar 

  5. Collins, M.: Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In: EMNLP (2002)

    Google Scholar 

  6. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36(1-2) (1999)

    Google Scholar 

  7. Dekel, O., Gilad-Bachrach, R., Shamir, O., Xiao, L.: Optimal distributed online prediction using mini-batches. arXiv:1012.1367 (2010)

    Google Scholar 

  8. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce for machine learning on multicore. In: NIPS (2007)

    Google Scholar 

  9. Teo, C.H., Vishwanthan, S., Smola, A.J., Le, Q.V.: Bundle methods for regularized risk minimization. J. Mach. Learn. Res. 11, 311–365 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Zinkevich, M., Weimer, M., Smola, A., Li, L.: Parallelized stochastic gradient descent. In: NIPS (2010)

    Google Scholar 

  11. Servedio, R.A., Long, P.: Algorithms and hardness results for parallel large margin learning. In: NIPS (2011)

    Google Scholar 

  12. Balcan, M.F., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communication complexity and privacy. In: COLT 2012, arXiv:1204.3514 (to appear, June 2012)

    Google Scholar 

  13. Daumé III, H., Phillips, J.M., Saha, A., Venkatasubramanian, S.: Efficient protocols for distributed classification and optimization. arXiv:1204.3523

    Google Scholar 

  14. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations, Cambridge (2009)

    Google Scholar 

  15. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional monitoring. In: SODA (2008)

    Google Scholar 

  16. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Optimal sampling from distributed streams. In: PODS (2010)

    Google Scholar 

  17. Matousek, J.: Approximations and optimal geometric divide-and-conquer. In: STOC (1991)

    Google Scholar 

  18. Chazelle, B.: The Discrepancy Method, Cambridge (2000)

    Google Scholar 

  19. Matoušek, J.: Geometric Discrepancy. Springer (1999)

    Google Scholar 

  20. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM TIST 2(3) (2011)

    Google Scholar 

  21. Arora, S., Hazan, E., Kale, S.: Fast algorithms for approximate semidefinite programming using the multiplicative weights update method. In: FOCS (2005)

    Google Scholar 

  22. Meka, R., Jain, P., Caramanis, C., Dhillon, I.S.: Rank minimization via online learning. In: ICML (2008)

    Google Scholar 

  23. Muthukrishnan, S.: Data streams: algorithms and applications. Foundations and trends in theoretical computer science. Now Publishers (2005)

    Google Scholar 

  24. Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. Disc. & Comp. Geom. 37(1), 79–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daumé, H., Phillips, J.M., Saha, A., Venkatasubramanian, S. (2012). Efficient Protocols for Distributed Classification and Optimization. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2012. Lecture Notes in Computer Science(), vol 7568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34106-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34106-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34105-2

  • Online ISBN: 978-3-642-34106-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics