Skip to main content

Robustness in the Presence of Task Differentiation in Robot Ensembles

  • Chapter
Redundancy in Robot Manipulators and Multi-Robot Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 57))

  • 1889 Accesses

Abstract

In the last fifteen years, much interest has been focused on the deployment of large teams of autonomous robots for applications such as environmental monitoring, surveillance and reconnaissance, and automated parts inspection for manufacturing. The objective is to leverage the team’s inherent redundancy to simultaneously cover wide regions and achieve massive parallelization in task execution while remaining robust to individual failures. Despite recent successes, significant challenges remain, in part, due to the difficulties associated with managing and coordinating the various redundancies that exist in a large team of homogeneous agents. In this chapter, we present an ensemble approach towards the design of distributed control and communication strategies for the dynamic allocation of a team of robots to a set of tasks. This approach uses a class of stochastic hybrid systems to model the robot team dynamics as a continuous-time Markov jump process. The main advantage is a lower-dimensional representation of the team dynamics that is amenable to system-level analysis of the team’s performance in the presence of task differentiation. We show how such analysis can be further used to design and optimize individual robot control policies through simulations and experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, S., Halasz, A., Hsieh, M.A., Kumar, V.: Navigation-based optimization of stochastic deployment strategies for a robot swarm to multiple sites. In: Proc. of the 47th IEEE Conference on Decision and Control, Cancun, Mexico (2008)

    Google Scholar 

  2. Berman, S., Halasz, A., Hsieh, M.A., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics 25(4), 927–937 (2009)

    Article  Google Scholar 

  3. Chen, J., Latchman, H.: Frequency sweeping tests for stability independent of delay. IEEE Transactions on Automatic Control 40(9), 1640–1645 (1995), doi:10.1109/9.412637

    Article  MathSciNet  MATH  Google Scholar 

  4. Dahl, T.S., Mataric̀, M.J., Sukhatme, G.S.: A machine learning method for improving task allocation in distributed multi-robot transportation. In: Braha, D., Minai, A., Bar-Yam, Y. (eds.) Understanding Complex Systems: Science Meets Technology, pp. 307–337. Springer, Berlin (2006)

    Google Scholar 

  5. Dias, M.B.: Traderbots: A new paradigm for robust and efficient multirobot coordination in dynamic environments. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2004)

    Google Scholar 

  6. Dias, M.B., Zlot, R.M., Kalra, N., Stentz, A.T.: Market-based multirobot coordination: a survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)

    Article  Google Scholar 

  7. Gerkey, B.P., Matarić, M.J.: Sold!: Auction methods for multi-robot control. IEEE Transactions on Robotics & Automation 18(5), 758–768 (2002)

    Article  Google Scholar 

  8. Gerkey, B.P., Matarić, M.J.: A formal framework for the study of task allocation in multi-robot systems. International Journal of Robotics Research 23(9), 939–954 (2004)

    Article  Google Scholar 

  9. Golfarelli, M., Maio, D., Rizzi, S.: Multi-agent path planning based on task-swap negotiation. In: Proceedings of the 16th UK Planning and Scheduling SIG Workshop, PlanSIG, Durham, England (1997)

    Google Scholar 

  10. Guerrero, J., Oliver, G.: Multi-robot task allocation strategies using auction-like mechanisms. In: Artificial Research and Development, Frontiers in Artificial Intelligence and Applications, vol. 100, pp. 111–122. IOS Press (2003)

    Google Scholar 

  11. Halasz, A., Hsieh, M.A., Berman, S., Kumar, V.: Dynamic redistribution of a swarm of robots among multiple sites. In: Proceedings of the Conference on Intelligent Robot Systems (IROS 2007), San Diego, CA, pp. 2320–2325 (2007)

    Google Scholar 

  12. Hespanha, J.P.: Moment closure for biochemical networks. In: Proc. of the Third Int. Symp. on Control, Communications and Signal Processing (2008)

    Google Scholar 

  13. Hsieh, M.A., Halasz, A., Berman, S., Kumar, V.: Biologically inspired redistribution of a swarm of robots among multiple sites. Swarm Intelligence (2008)

    Google Scholar 

  14. Hsieh, M.A., Halasz, A., Cubuk, E.D., Schoenholz, S., Martinoli, A.: Specialization as an optimal strategy under varying external conditions. In: Accepted the International Conference on Robotics and Automation, ICRA 2007, Kobe-Japan (2009)

    Google Scholar 

  15. Jones, E.G., Browning, B., Dias, M.B., Argall, B., Veloso, M., Stentz, A.T.: Dynamically formed heterogeneous robot teams performing tightly-coordinated tasks. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), pp. 570–575. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  16. Jones, E.G., Dias, M.B., Stentz, A.: Learning-enhanced market-based task allocation for oversubscribed domains. In: Proceedings of the Conference on Intelligent Robot Systems (IROS 2007), pp. 2308–2313. IEEE, Los Alamitos (2007)

    Google Scholar 

  17. Klavins, E.: Proportional-integral control of stochastic gene regulatory networks. In: Proc. of the 2010 IEEE Conf. on Decision and Control (CDC 2010), Atlanta, GA, USA (2010)

    Google Scholar 

  18. Lerman, K., Jones, C., Galstyan, A., Matarić, M.J.: Analysis of dynamic task allocation in multi-robot systems. International Journal of Robotics Research (2006)

    Google Scholar 

  19. Lin, L., Zheng, Z.: Combinatorial bids based multi-robot task allocation method. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 1145–1150. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  20. Martinoli, A., Easton, K., Agassounon, W.: Modeling of swarm robotic systems: a case study in collaborative distributed manipulation. International Journal of Robotics Research: Special Issue on Experimental Robotics 23(4-5), 415–436 (2004)

    Google Scholar 

  21. Mather, T.W., Hsieh, M.A.: Distributed filtering for time-delayed deployment to multiple sites (best paper award winner). In: 10th International Symposium on Distributed Autonomous Robotics Systems (DARS 2010), Lausanne, Switzerland (November 2010)

    Google Scholar 

  22. Mather, T.W., Hsieh, M.A.: Analysis of stochastic deployment policies with time delays for robot ensembles. International Journal of Robotics Research: Special Issue on Stochasticity in Robotics & Biological Systems, Part 1 30(5) (2011)

    Google Scholar 

  23. Mather, T.W., Hsieh, M.A.: Distributed robot ensemble control for deployment to multiple sites. In: 2011 Robotics: Science and Systems, Los Angeles, CA USA (2011)

    Google Scholar 

  24. USARSim, Unified system for automation and robot simulation (2005), http://usarsim.sourceforge.net

  25. Vail, D., Veloso, M.: Multi-robot dynamic role assignment and coordination through shared potential fields. In: Schultz, A., Parker, L., Schneider, F. (eds.) Multi-Robot Systems, pp. 87–98. Kluwer (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ani Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hsieh, M.A., Mather, T.W. (2013). Robustness in the Presence of Task Differentiation in Robot Ensembles. In: Milutinović, D., Rosen, J. (eds) Redundancy in Robot Manipulators and Multi-Robot Systems. Lecture Notes in Electrical Engineering, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33971-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33971-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33970-7

  • Online ISBN: 978-3-642-33971-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics