Skip to main content

Pesticides Removal Using Actinomycetes and Plants

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

  • 3182 Accesses

Abstract

The γ-hexachlorocyclohexane (γ-HCH, lindane) is an organochlorine pesticide used in agriculture and medicine to world level. It has a big tendency to bioaccumulation into the environment so is listed as a priority pollutant by the US EPA. Hence the development of new technologies to remediate these sites using microorganisms is every time more necessary. The actinomycetes are Gram-positive bacteria with great potential to bioremediate xenobiotics. One strain, Streptomyces sp. M7, isolated from organochlorine pesticide contaminated sediment, was selected for its capacity to grow in presence of lindane as only carbon source. This microorganism was cultured in soil extract medium added of lindane 100 μg L−1, obtaining a maximal growth of 0.065 mg mL−1, similar to the control, with a highest lindane remotion of 70.4 % at 30°C and pH 7. When different initial pesticide concentrations (100, 150, 200, and 300 μg L−1) were added in soil medium, an increment of the microbial growth was detected in all the concentrations tested. Also a diminution of the residual lindane concentration was determined in the soil samples in relation to controls without bacteria (29.1, 78.0, 38.8, and 14.4 %, respectively). Besides, it was determined the optimum Streptomyces sp. M7 inoculum when lindane 100 μg kg−1soil was added to the soil sample. The optimum inoculum was 2 g kg−1 soil for obtaining the most efficiently bioremediation process: the lindane removal in these conditions was 67.8 % at 28 days of incubation. Later it was considered necessary to know the pesticide effects on maize plants seeded in lindane-contaminated soil previously inoculated with Streptomyces sp. M7. Lindane concentrations of 100, 200, and 400 mg kg−1 soil did not affect the germination and vigor index of maize plants seeded in contaminated soils without Streptomyces sp. M7. When this microorganism was inoculated at the same conditions, a better vigor index was observed and 68 % of lindane was removed. In this connection, Streptomyces sp. M7 was grown on culture medium in presence of root exudates of maize, spiked with 1.66 mg L−1 of lindane. The highest level of pesticide removal obtained on this condition suggests that root exudates enhanced removal of lindane by the bacterium. On the other hand, little information is available on the ability of biotransformation of organochlorine pesticides by actinomycete strains. It was demonstrated that Streptomyces sp. M7 possesses the LinA enzyme that catalyzes dehydrochlorination of lindane to 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN) via γ-pentachlorocyclohexene (γ-PCCH). These results confirm that actinomycete strains could be considered one of the most promising bacterial groups for lindane biodegradation in contaminated environment. Particularly, Streptomyces sp. M7 could be used for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez A, Benimeli CS, Sesto Cabral ME, Amoroso MJ (2010) Efecto de los exudados radiculares de plantas de maíz en la remoción de lindano por la cepa de Actinomycetes nativa Streptomyces sp. M7. In: Revista Argentina de Microbiología 2010: abstracts of the annual meeting of the Argentinean Society of Microbiology. Argentinean Society of Microbiology, Bs As, p 24

    Google Scholar 

  • Alvarez A, Yañez LM, Benimeli CS, Amoroso MJ (2012). Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains. Int Biodeterior Biodegrad 66:14–18.

    Article  CAS  Google Scholar 

  • Amoroso MJ, Castro G, Carlino F, Romero NC, Hill R, Oliver G (1998) Screening of actinomycetes isolated from Salí river tolerant to heavy metal. J Gen Appl Microbiol 44:29–32

    Article  Google Scholar 

  • Arisoy M, Kolankaya N (1997) Biodegradation of lindane by Pleurotus sajor-caju and toxic effects of lindane and its metabolites on mice. Environ Contam Toxicol 59:352–359

    Article  CAS  Google Scholar 

  • Awasthi N, Ahuja R, Kumar A (2000) Factors influencing the degradation of soil applied endosulfan isomers. Soil Biol Biochem 32:1697–1705

    Article  CAS  Google Scholar 

  • Bachmann A, Wijnen P, DeBruin W, Huntjens JL, Roelofsen W, Zehnder AJ (1998) Biodegradation of alpha- and beta-hexachlorocyclohexane in a soil slurry and under different redox conditions. Appl Environ Microbiol 54:143–149

    Google Scholar 

  • Benimeli CS, Amoroso MJ, Chaile AP, Castro GR (2003) Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Bioresour Technol 89:133–138

    Article  PubMed  CAS  Google Scholar 

  • Benimeli CS, Castro GR, Chaile AP, Amoroso MJ (2007a) Lindane uptake and degradation by aquatic Streptomyces sp. M7 Strain. Int Biodeter Biodegr 59:148–155

    Article  CAS  Google Scholar 

  • Benimeli CS, Gonzalez AJ, Chaile AP, Amoroso MJ (2007b) Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract. J Basic Microbiol 47:468–473

    Article  PubMed  CAS  Google Scholar 

  • Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane contaminated soil by Streptomyces sp M7 and its effects on Zea mays growth. Int Biodeter Biodegr 61:233–239

    Article  CAS  Google Scholar 

  • Bidlan R, Afsar M, Manonmani HK (2004) Bioremediation of HCH-contaminated soil: elimination of inhibitory effects of the insecticide on radish and green gram seed germination. Chemosphere 56:803–811

    Article  PubMed  CAS  Google Scholar 

  • Blais JM, Schindler DW, Mair DC, Kimpe LE, Donald DB, Rosenberg B (1998) Acclimation of persistent organochlorine compounds in mountains of Western Canada. Nature 395:585–588

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2002) Plant-soil-contaminant specificity affects phytoremediation of organic contaminants. Int J Phytoremediation 4:17–26

    Article  CAS  Google Scholar 

  • Chen SH, Aitken MD (1999) Salicylate stimulates the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33:435–439

    Article  CAS  Google Scholar 

  • Corgié SC, Joner EJ, Leyval C (2003) Rhizospheric degradation of phenanthrene is a function of proximity to roots. Plant Soil 257:143–150

    Article  Google Scholar 

  • Cuozzo SA, Rollán GC, Abate CM, Amoroso MJ (2009) Specific dechlorinase activity in lindane degradation by Streptomyces sp. M7. World J Microbiol Biotechnol 25:1539–1546

    Article  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, Heidelberg

    Book  Google Scholar 

  • De Schrijver A, De Mot R (1999) Degradation of pesticides by actinomycetes. Crit Rev Microbiol 25:85–119

    Article  PubMed  Google Scholar 

  • Ferguson JA, Korte F (1977) Epoxidation of aldrin to exo-dieldrin by soil bacteria. Appl Environ Microbiol 34:7–13

    PubMed  CAS  Google Scholar 

  • Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeter Biodegr. doi:10.1016/j.biod.2010.05.001

  • Galiulin RV, Bashkin VN, Galiulina RA (2002) Behaviour of persistent organic pollutants in the air–plant–soil system. Water Air Soil Pollut 137:179–191

    Article  CAS  Google Scholar 

  • Hegde RS, Fletcher JS (1996) Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32:2471–2479

    Article  CAS  Google Scholar 

  • Johri AK, Dua M, Saxena DM, Sethunathan N (2000) Enhanced degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis. Curr Microbiol 41:309–311

    Article  PubMed  CAS  Google Scholar 

  • Kidd PS, Prieto-Fernández A, Monterroso C, Acea MJ (2008) Rhizosphere microbial community and hexachlorocyclohexane degradative potential in contrasting plant species. Plant Soil 302:233–247

    Article  CAS  Google Scholar 

  • Krueger JP, Butz RG, Cork DJ (1991) Use of dicamba-degradating microorganisms to protect dicamba susceptible plant species. J Agric Food Chem 39:1000–1003

    Article  CAS  Google Scholar 

  • Krutz LJ, Beyrouty CA, Gentry TJ, Wolf DC, Reynolds CM (2005) Selective enrichment of a pyrene degrader population and enhanced pyrene degradation in Bermuda grass rhizosphere. Biol Fertil Soils 41:359–364

    Article  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  PubMed  CAS  Google Scholar 

  • Kumar-Ajit PV, Gangadhara KP, Manilal P, Kunhi AAM (1998) Soil inoculation with Pseudomonas aeruginosa 3mT eliminates the inhibitory effect of 3-chloro- and 4-chlorobenzoate on tomato seed germination. Soil Biol Biochem 30:1053–1059

    Article  Google Scholar 

  • Li YF (1999) Global technical hexachlorocyclohexane usage and its contamination consequences in the environment from: 1948–1997. Sci Total Environ 232:121–158

    Article  CAS  Google Scholar 

  • Liu SY, Freyer AJ, Bollag JM (1991) Microbial dechlorination of the herbicide metolachlor. J Agric Food Chem 39:631–636

    Article  CAS  Google Scholar 

  • Luo L, Zhang S, Shan X, Zhu Y (2006) Oxalate and root exudates enhance the desorption of p,p′-DDT from soils. Chemosphere 63:1273–1279

    Article  PubMed  CAS  Google Scholar 

  • Manonmani HK, Chandrashekariah DH, Sreedhar Reddy N, Elecy CD, Kunhi AA (2000) Isolation and acclimation of a microbial consortium for improved aerobic degradation of α-hexachlorocyclohexane. J Agric Food Chem 48:4341–4351

    Article  PubMed  CAS  Google Scholar 

  • Miya KR, Firestone MK (2001) Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30:1911–1918

    Article  PubMed  CAS  Google Scholar 

  • Mougin C, Pericaud C, Malosse C, Laugero C, Ashter M (1999) Biotransformation of the insecticide lindane by the white-rot basidiomycete Phanerochaete chrysosporium. Pept Sci 47:51–59

    Google Scholar 

  • Muratova A, Thorsten H, Narula N, Wand H, Turkovskaya O, Kuschk P, Jahn R, Merbach W (2003) Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil. Microbiol Res 158:151–161

    Article  PubMed  CAS  Google Scholar 

  • Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K, Takagi M (1993) Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of gamma-hexachlorocyclohexane (γ-HCH) in Pseudomonas paucimobilis. J Bacteriol 175:6403–6410

    PubMed  CAS  Google Scholar 

  • Nagata Y, Futamura A, Miyauchi K, Takagi M (1999) Two different types of dehalogenases, Lin A and Lin B, involved in γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26 are localized in the periplasmic space without molecular processing. J Bacteriol 181:5409–5413

    PubMed  CAS  Google Scholar 

  • Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76:741–752

    Article  PubMed  CAS  Google Scholar 

  • Normand P, Queiroux C, Tisa LS, Benson DR, Rouy Z, Cruvellier S, Médigue C (2007) Exploring the genomes of Frankia. Physiol Plant 130:331–343

    Article  CAS  Google Scholar 

  • Okeke BC, Siddique T, Arbestain MC, Frankenberger WT (2002) Biodegradation of γ-Hexachlorocyclohexane (lindane) and α-Hexachlorocyclohexane in water and a soil slurry by a Pandoraea species. J Agric Food Chem 50:2548–2555

    Article  PubMed  CAS  Google Scholar 

  • Pandya S, Iyer P, Gaitonde V, Parekh T, Desai A (1999) Chemotaxis of Rhizobium sp. S2 towards Cajanus cajan root exudates and its major components. Curr Microbiol 38:205–209

    Article  PubMed  CAS  Google Scholar 

  • Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392

    Article  PubMed  CAS  Google Scholar 

  • Radosevich M, Traina SJ, Hao YL, Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol 61:297–302

    PubMed  CAS  Google Scholar 

  • Ravel J, Amoroso MJ, Colwell RR, Hill RT (1998) Mercury-resistant actinomycetes from Chesapeake Bay. FEMS Microbiol Lett 162:177–184

    Article  PubMed  CAS  Google Scholar 

  • Rentz JA, Alvarez PJ, Schnoor JL (2004) Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ Microbiol 6:574–583

    Article  PubMed  Google Scholar 

  • Rentz JA, Alvarez PJ, Schnoor JL (2005) Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: implications for phytoremediation. Environ Pollut 136:477–484

    Article  PubMed  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SA, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Google Scholar 

  • Shaw LJ, Burns RG (2003) Biodegradation of organic pollutants in the rhizosphere. Adv Appl Microbiol 53:1–60

    Article  PubMed  CAS  Google Scholar 

  • Shaw LJ, Burns RG (2005) Rhizodeposition and the enhanced mineralization of 2,4 dichlorophenoxyacetic acid in soil from the Trifolium pratense rhizosphere. Environ Microbiol 7:191–202

    Article  PubMed  CAS  Google Scholar 

  • Shelton DR, Khader S, Karns JS, Pogell BM (1996) Metabolism of twelve herbicides by Streptomyces. Biodegradation 7:129–136

    Article  PubMed  CAS  Google Scholar 

  • Siddique T, Okeke BC, Arshad M, Frankerberger WT Jr (2002) Temperature and pH effects on biodegradation of hexachlorocyclohexane isomers in water and soil slurry. J Agric Food Chem 50:5070–5076

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Kuhad RC (2000) Degradation of the insecticide lindane (γ-HCH) by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56:142–146

    Article  CAS  Google Scholar 

  • Singh BK, Kuhad RC, Singh A, Tripathi KK, Ghosh PK (2000) Microbial degradation of the pesticide lindane (gamma-hexachlorocyclohexane). Adv Appl Microbiol 47:269–298

    Article  PubMed  CAS  Google Scholar 

  • Tang CS, Young C (1982) Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss (Hemarthria altissima). Plant Physiol 69:155–160

    Article  PubMed  CAS  Google Scholar 

  • Walker K, Vallero DA, Lewis RG (1999) Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment. Environ Sci Technol 33:4373–4378

    Article  CAS  Google Scholar 

  • White JC (2001) Plant-facilitated mobilization and translocation of weathered 2,2-bis(p chlorophenyl)-1,1-dichloroethylene (p, p′-DDE) from an agricultural soil. Environ Toxicol Chem 20:2047–2052

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT), Agencia Nacional de Promoción CientÚfica y Tecnológica (ANPyCT), Consejo Nacional de Investigaciones CientÚficas y Técnicas (CONICET) and Fundación Bunge y Born.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Amoroso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alvarez, A., Fuentes, M.S., Benimeli, C.S., Cuozzo, S.A., Saez, J.M., Amoroso, M.J. (2013). Pesticides Removal Using Actinomycetes and Plants. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_10

Download citation

Publish with us

Policies and ethics