Skip to main content

Materials of the Reactor Core

  • Chapter
  • First Online:
Nuclear Rocket Engine Reactor

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 170))

  • 1990 Accesses

Abstract

By the beginning of work in the 1960s, information on the properties and manufacturing technology of materials for the NRE core (based on zirconium, niobium, uranium carbides, and zirconium hydride) was absent or inconsistent. It was known that unlike mono compound of uranium with a low melting point (2,500 K), a fuel based on solid solutions of UC–ZrC and UC–NbC carbides with nearly stochastic composition can provide the heating of hydrogen up to 3,000 K. Therefore, investigations of solid solutions of uranium monocarbide with isomorphous, highly refractory zirconium, niobium, and monocarbides providing high melting points and compatibility of HREs with heat carriers became the most important material technology direction. The prospects of the development of UC–ZrC–ZrN fuel were also outlined. The manufacturing technology of these refractory materials was based on powder metallurgy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson, H. F., & Le, W. E. (2012). Properties and characteristics of ZrC (pp. 339–372). Amsterdam: Elsiver.

    Google Scholar 

  2. Andrievsky, R. A., Spivak, I. I. (1989). Strength of refractory compounds; Directory (p. 367). Chelyabinsk: Metallurgy.

    Google Scholar 

  3. Andrievsky, R. A., Lanin, A. G., & Rymashevsky, G. A. (1974). Strength of refractory compounds-M: Metallurgy, p. 232.

    Google Scholar 

  4. Daragan, I. D., D’jakov, E. K., Fedik I. I. et al. (2003). Fuel element assemblages of the space nuclear power propulsion systems. Moscow: Nuclear Technology Engineering Industry. vol. IV-25, under Adamov’s edition. Engineering industry, book 2.

    Google Scholar 

  5. Nuclear Technology Engineering Industry (2003). Moscow, vol. IV-25, under Adamovs’s edition. Engineering industry., book 1. 953 p. book 2. 943 p.

    Google Scholar 

  6. Lanin, A. G., & Fedik., I. I. (2008). Thermal stress resistance of materials (p. 239). Heidelberg: Springer.

    Google Scholar 

  7. RIPRA “Luch”. (2004). Affairs and people. Podolsk. RIPRA "LUCH". Ed. Fedik I.I. Podolsk, 455 p.

    Google Scholar 

  8. Andrievsky, R. A., & Umanskiy, Y. S. (1977). Interstitial phases M. Science, p. 238.

    Google Scholar 

  9. Lanin, A. G., Zubarev, P. V., & Vlasov, K. P. (1993). Research of mechanical and heat-physical properties of fuel and constructive materials of NRER. Atomic Energy, 74(1), 42–47.

    Article  Google Scholar 

  10. Lanin, A. G., & Babajants, G. I. (2003). Structural materials of an active zone of NRER. In Engineering nuclear industry (vol. IV-25). under E.O.Adam’s edition. Moscow: Engineering Industry. book 1.

    Google Scholar 

  11. Kosycheva, L. I., Lanin, A. G., Manjuhin, V. P. et al. (1978). Research of physical-mechanical properties of fuel compositions ZrC-UC. ZrC-NbC-UC. ZrC-UC-C (vol. 111803, pp. 47–67). Podolsk: Scientific Research Institute NPO “LUCH”.

    Google Scholar 

  12. Andrievsky R. A. (1991). Powder materials technology (p. 207). Moscow: M. Metallurgija.

    Google Scholar 

  13. Andrievsky, R. A., Hromonozhkin, V. V., et al. (1969). Evaporation of uranium carbide. uranium nitride and uranium carbide-nitride. Atomic Energy, 26, 494–497.

    Google Scholar 

  14. Lanin, A. G. (1998). Strength and thermal stress resistance of structural ceramic (111 p.). Moscow: M. Moscow State Engineer Physical institute.

    Google Scholar 

  15. Nezhevenko, L. B., Groshev V. I., & Bokov, I. V. (1970). Influence of ZrC powders on properties of sintering samples. In “Refractory Carbides” (pp. 58–61). K. Naukova Dumka.

    Google Scholar 

  16. Bulychyov, V. P., Andrievsky, R. A., & Nezhevenko, L. B. (1977). Sintering of zirconium carbide. Powder Metallurgy, 1(4), 38–42.

    Google Scholar 

  17. Gerasimov, P. V., Egorov, V. S., Lanin, A. G., Nezhevenko, L. B., & Sokolov, V. A. (1982). Strength of compositions on the basis of zirconium carbide with disperse carbon inclusions. Powder Metallurgy, 11, 67–74.

    Google Scholar 

  18. Lanin, A. G., Popov, V. I., Maskaev, A., et al. (1981). Strength of carbide-graphite compositions at power and thermal loading. Problems of Strength, 112, 89–95.

    Google Scholar 

  19. Lanin, A. G., Marchev, E. V., & Pritchin, S. A. (1991). Non-isothermal sintering parameters and their influence on the structure and properties of zirconium carbide. Ceramics International, 17, 301–307.

    Article  Google Scholar 

  20. Lanin, A. G. (2007). Physical processes microindentation of carbide monocrystals of transition metals. Functional Materials, 1(110), 383–389.

    Google Scholar 

  21. Lanin, A. G. (2004). Strength and thermo-mechanical reinforcement of the refractory ceramic materials. Izvestia of the Russian Academy of Sciences. Series Physical, 68(110), 1503–1509.

    Google Scholar 

  22. Zubarev, P. V. (1985). Heat resistance of interstitial phases (101 p.). Moscow: M. Metallurgija.

    Google Scholar 

  23. Derjavko, I. I., Egorov, V. S., Lanin, A. G., et al. (2001). Radiographic research of the residual Stresses in the rod carbide fuel elements. The Bulletin of the National Nuclear Centre of Republic Kazakhstan, 14, 95.

    Google Scholar 

  24. Fedik, I. I. Kolesov, V. S., & Mihajlov, V. N. (1985). Temperature fields and thermal stresses in nuclear-reactors (280 p.). Moscow: M. Energoatomizdat.

    Google Scholar 

  25. Lanin, A. G., Erin, O. N., & Turchin V. N. (1990). Zirconium carbide strength and plasticity. Refractory Metals and Hard Metals, 92(3), 120–124; 139–141.

    Google Scholar 

  26. Zubarev, P. V., Kuraev, A. B., Lanin, A. G., et al. (1992). Influence of a grain size on creep of zirconium carbide. FMM, 16, 122–125.

    Google Scholar 

  27. Lanin, A. G. (1995). Thermal stress resistance of porous Si\(_{3}\)N\(_{4}\). ZrC heterogeneous carbides and hydrides. Proceedings of 6th International Symposium on Fracture Mechanics of Ceramic, July 18–20, Karlsruhe, Germany.

    Google Scholar 

  28. Lanin, A. G., & Egorov, V. S. (1999). Elastic–plastic fracture of the bodies under combined influence of the thermal and mechanical loads. FCHOM, 2, 78–81.

    Google Scholar 

  29. Vlasov, N. M., & Fedik, I. I. (2001). Fuel elements of nuclear rocket engines (p. 207). Moscow: Tsniatominform.

    Google Scholar 

  30. Zelenskij, D. I., Pivovarov, O. C., Tuhvatulin, S. T. et al. (1999). Experience generalization of reactor working off of the rod carbide fuels on a complex stand “Baikal-1” and the development of applied production engineering (pp. 49–60). The Fifth International Conference “Nuclear Power Space”, Podolsk.

    Google Scholar 

  31. Katz, S. M. (1981). High-temperature heat insulating materials (p. 232). Moscow: M. Metallurgy.

    Google Scholar 

  32. Vjatkin, S. E., & Deev, A. N. (1967). Nuclear graphite (279 p.). Moscow: Atomizdat.

    Google Scholar 

  33. Kats, S. M., Gorin, A. I., & Semenov, M. V. (1972). Poroshkovaja Metallurgija, 7, 87–92.

    Google Scholar 

  34. Babajants, G. I., Golomazov, V. M., Granov, V. I., & Shmakov, V. A. (1974). Copyright certificate N 424658 “Opening. inventions. commercial machines. Trade marks”, vol. 15, p. 38.

    Google Scholar 

  35. Ponomarev-Stepnoy, N. N. (1993). Creation history of NRER in the USSR (pp. 3–18). Third Branch Conferences “Nuclear Power in Space”.

    Google Scholar 

  36. Andrievsky, R. A. (1986). Material science of hydrides (p. 129). Moscow: M Metallurgy.

    Google Scholar 

  37. Lanin, A. G., Zalivin, I. M., & Turchin, V. N. (1984). Mechanical property of hydride alloys Zr. Y. Ti. Problem of Strength, 6, 83–86.

    Google Scholar 

  38. Zubarev, P. V., & Ryzhov, P. (1979). Creep of Zr and Y hydrides inorganic materials. 16(2), 247–250.

    Google Scholar 

  39. Lanin, A. G. (2011). Influence of residual stresses on ceramic materials strength and fracture. Deformation and Fracture, 4.

    Google Scholar 

  40. Koch, C. C., Ovud’ko, I. A., Seal, S., & Veprek, S. (2007). Structural nanocrystalline materials: Fundamental and application (p. 364). Cambridge: Cambridge University Press.

    Google Scholar 

  41. Andrievsky, R. A. (2012). The basis of nanostructural materialscience: Possibilities and problems (p. 251). Moscow: Publishing house BINOM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Lanin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lanin, A. (2013). Materials of the Reactor Core. In: Nuclear Rocket Engine Reactor. Springer Series in Materials Science, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32430-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32430-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32429-1

  • Online ISBN: 978-3-642-32430-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics