Skip to main content

Spatial Measures between Human Poses for Classification and Understanding

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7378))

Included in the following conference series:

Abstract

Statistical analysis of humans, their motion and their behaviour is a very well-studied problem. With the availability of accurate motion capture systems, it has become possible to use such analysis for animation, understanding, compression and tracking of human motion. At the core of the analysis lies a measure for determining the distance between two human poses; practically always, this measure is the Euclidean distance between joint angle vectors. Recent work [7] has shown that articulated tracking systems can be vastly improved by replacing the Euclidean distance in joint angle space with the geodesic distance in the space of joint positions. However, due to the focus on tracking, no algorithms have, so far, been presented for measuring these distances between human poses.

In this paper, we present an algorithm for computing geodesics in the Riemannian space of joint positions, as well as a fast approximation that allows for large-scale analysis. In the experiments we show that this measure significantly outperforms the traditional measure in classification, clustering and dimensionality reduction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. International Journal of Computer Vision 56, 179–194 (2004)

    Article  Google Scholar 

  2. Carmo, M.P.D.: Differential Geometry of Curves and Surfaces. Prentice Hall (1976)

    Google Scholar 

  3. Erleben, K., Sporring, J., Henriksen, K., Dohlmann, H.: Physics Based Animation. Charles River Media (August 2005)

    Google Scholar 

  4. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Transaction on Graphics 23(3), 522–531 (2004)

    Article  Google Scholar 

  5. Guerra-Filho, G., Aloimonos, Y.: A language for human action. Computer 40, 42–51 (2007)

    Article  Google Scholar 

  6. Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-Like Spatial Priors for Articulated Tracking. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 425–437. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Hauberg, S., Sommer, S., Pedersen, K.S.: Natural metrics and least-committed priors for articulated tracking. In: Image and Vision Computing (2011)

    Google Scholar 

  8. Kjellström, H., Kragić, D., Black, M.J.: Tracking people interacting with objects. In: IEEE CVPR (2010)

    Google Scholar 

  9. Lu, Z., Carreira-Perpinan, M., Sminchisescu, C.: People Tracking with the Laplacian Eigenmaps Latent Variable Model. In: NIPS, vol. 20, pp. 1705–1712. MIT Press (2008)

    Google Scholar 

  10. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press (March 1994)

    Google Scholar 

  11. Poon, E., Fleet, D.J.: Hybrid monte carlo filtering: Edge-based people tracking. In: IEEE Workshop on Motion and Video Computing, p. 151 (2002)

    Google Scholar 

  12. Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision and Image Understanding 108(1-2), 4–18 (2007)

    Article  Google Scholar 

  13. Priyamvada, K.K., Kahol, K., Tripathi, P., Panchanathan, S.: Automated gesture segmentation from dance sequences. In: Int. Conf. on Automatic Face and Gesture Recognition (2004)

    Google Scholar 

  14. Ramanan, D., Baker, S.: Local distance functions: a taxonomy, new algorithms, and an evaluation. TPAMI (4) (2011)

    Google Scholar 

  15. Ripley, B.D.: Pattern recognition and neural networks. Cambridge University Press (1996)

    Google Scholar 

  16. Sheikh, Y.A., Khan, E.A., Kanade, T.: Mode-seeking by medoidshifts. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  17. Shon, A.P., Grochow, K., Rao, R.P.: Robotic imitation from human motion capture using Gaussian processes (2005)

    Google Scholar 

  18. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic Tracking of 3D Human Figures Using 2D Image Motion. In: Vernon, D. (ed.) ECCV 2000, Part II. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Sminchisescu, C., Jepson, A.: Generative modeling for continuous non-linearly embedded visual inference. In: ICML 2004, pp. 759–766. ACM (2004)

    Google Scholar 

  20. Tenenbaum, J.B., Silva, V., Langfor, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  21. Tournier, M., Wu, X., Courty, N., Arnaud, E., Reveret, L.: Motion compression using principal geodesics analysis. Computer Graphics Forum 28(2), 355–364 (2009)

    Article  Google Scholar 

  22. Urtasun, R., Fleet, D.J., Fua, P.: 3D People Tracking with Gaussian Process Dynamical Models. In: IEEE CVPR, pp. 238–245 (2006)

    Google Scholar 

  23. Urtasun, R., Fleet, D.J., Hertzmann, A., Fua, P.: Priors for people tracking from small training sets. In: ICCV, vol. 1, pp. 403–410 (2005)

    Google Scholar 

  24. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian Process Dynamical Models for Human Motion. IEEE PAMI 30(2), 283–298 (2008)

    Article  Google Scholar 

  25. Yao, A., Gal, J., Fanelli, G., van Gool, L.: Does human action recognition benefit from pose estimation? In: BMVC (2011)

    Google Scholar 

  26. Zhao, J., Badler, N.I.: Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Transaction on Graphics 13(4), 313–336 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hauberg, S., Steenstrup Pedersen, K. (2012). Spatial Measures between Human Poses for Classification and Understanding. In: Perales, F.J., Fisher, R.B., Moeslund, T.B. (eds) Articulated Motion and Deformable Objects. AMDO 2012. Lecture Notes in Computer Science, vol 7378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31567-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31567-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31566-4

  • Online ISBN: 978-3-642-31567-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics