Skip to main content

Reversible Circuits: Recent Accomplishments and Future Challenges for an Emerging Technology

(Invited Paper)

  • Conference paper
Progress in VLSI Design and Test

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7373))

Abstract

Reversible circuits build the basis for emerging technologies like quantum computation and have promising applications in domains like low power design. Hence, much progress in the development of design solutions for this kind of circuits has been made in the last decade. In this paper, we provide an overview on reversible circuits as well as their applications. We discuss recent accomplishments and, finally, have a look on future challenges in the design of circuits for this emerging technology.

This work was supported by the German Research Foundation (DFG; DR 287/20-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)

    Google Scholar 

  2. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)

    Article  Google Scholar 

  3. Wille, R., Drechsler, R., Oswald, C., Garcia-Ortiz, A.: Automatic design of low-power encoders using reversible circuit synthesis. In: Design, Automation and Test in Europe, pp. 1036–1041 (2012)

    Google Scholar 

  4. Drechsler, R., Wille, R.: From truth tables to programming languages: Progress in the design of reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 78–85 (2011)

    Google Scholar 

  5. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: An Open Source Toolkit for the Design of Reversible Circuits. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 64–76. Springer, Heidelberg (2012), RevKit http://www.revkit.org

    Chapter  Google Scholar 

  6. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225 (2008), RevLib, http://www.revlib.org

  7. Wille, R., Offermann, S., Drechsler, R.: SyReC: A programming language for synthesis of reversible circuits. In: Forum on Specification and Design Languages, pp. 184–189 (2010)

    Google Scholar 

  8. Grover, L.K.: A fast quantum mechanical algorithm for database search. Theory of Computing, 212–219 (1996)

    Google Scholar 

  9. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  10. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)

    Article  Google Scholar 

  11. Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. The American Physical Society 52, 3457–3467 (1995)

    Google Scholar 

  12. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control toffolli gates. In: Int’l Symp. on Multi-Valued Logic, pp. 288–293 (2011)

    Google Scholar 

  13. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zeitzoff, P., Chung, J.: A perspective from the 2003 ITRS. IEEE Circuits & Systems Magazine 21, 4–15 (2005)

    Article  Google Scholar 

  15. Gershenfeld, N.: Signal entropy and the thermodynamics of computation. IBM Systems Journal 35(3-4), 577–586 (1996)

    Article  Google Scholar 

  16. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  17. Patra, P., Fussell, D.: On efficient adiabatic design of MOS circuits. In: Workshop on Physics and Computation, Boston, pp. 260–269 (1996)

    Google Scholar 

  18. Glück, R., Kawabe, M.: A method for automatic program inversion based on LR(0) parsing. Fundamenta Informaticae 66(4), 367–395 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Abramov, S., Glück, R.: The universal resolving algorithm and its correctness: inverse computation in a functional language. Science of Computer Programming 43(2-3), 193–229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans. on CAD 23(11), 1497–1509 (2004)

    Google Scholar 

  21. Miller, D.M., Wille, R., Dueck, G.: Synthesizing reversible circuits for irreversible functions. In: EUROMICRO Symp. on Digital System Design, pp. 749–756 (2009)

    Google Scholar 

  22. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conf., pp. 270–275 (2009)

    Google Scholar 

  23. Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible circuits. In: Design Automation Conf., pp. 647–652 (2010)

    Google Scholar 

  24. Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines for large reversible circuits. In: Design, Automation and Test in Europe, pp. 1204–1207 (2011)

    Google Scholar 

  25. Thomson, M.K., Glück, R.: Optimized reversible binary-coded decimal adders. J. of Systems Architecture 54, 697–706 (2008)

    Article  Google Scholar 

  26. Khan, M.H.A.: Cost reduction in nearest neighbour based synthesis of quantum boolean circuits. Engineering Letters 16, 1–5 (2008)

    Google Scholar 

  27. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Information Processing 10(3), 355–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chuang, M., Wang, C.: Synthesis of reversible sequential elements. In: ASP Design Automation Conf., pp. 420–425 (2007)

    Google Scholar 

  29. Nayeem, N.M., Hossain, M.A., Jamal, L., Babu, H.: Efficient design of shift registers using reversible logic. In: Int’l Conf. on Signal Processing Systems, pp. 474–478 (2009)

    Google Scholar 

  30. Himanshu, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. J. Emerg. Technol. Comput. Syst. 6, 14:1–14:31 (2010)

    Google Scholar 

  31. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Checking equivalence of quantum circuits and states. In: Int’l Conf. on CAD, pp. 69–74 (2007)

    Google Scholar 

  32. Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence checking of reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 324–330 (2009)

    Google Scholar 

  33. Wille, R., Große, D., Frehse, S., Dueck, G.W., Drechsler, R.: Debugging of Toffoli networks. In: Design, Automation and Test in Europe, pp. 1284–1289 (2009)

    Google Scholar 

  34. Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for reversible circuits. In: Asian Test Symp., pp. 422–427 (2005)

    Google Scholar 

  35. Wille, R., Zhang, H., Drechsler, R.: ATPG for reversible circuits using simulation, Boolean satisfiability, and pseudo Boolean optimization. In: IEEE Annual Symposium on VLSI, pp. 120–125 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Drechsler, R., Wille, R. (2012). Reversible Circuits: Recent Accomplishments and Future Challenges for an Emerging Technology. In: Rahaman, H., Chattopadhyay, S., Chattopadhyay, S. (eds) Progress in VLSI Design and Test. Lecture Notes in Computer Science, vol 7373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31494-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31494-0_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31493-3

  • Online ISBN: 978-3-642-31494-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics