Skip to main content

Soil Nailing with Flexible Structural Facing: Design and Experiences

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

Officine Maccaferri has developed BIOS, a simplified as well as realistic design approach for the calculation of the flexible structural facing of soil nailing. The approach shows that the most important property of this kind of application is membrane stiffness of the mesh. With the procedure of BIOS is possible to reduce the timing of design and get a cost effective intervention. Anyway the designer judgment is required for a better evaluation of the critical factors like the slope morphology, the admissible displacement and settlement, the presence of water and erosion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bertolo P, Ferraiolo F, Giacchetti G, Oggeri C, Peila D, Rossi B (2007) Metodologia per prove in vera grandezza su sistemi di protezione corticale dei versanti. GEAM Geoingegneria Ambientale e mineraria, Anno XLIV, N. 2, Maggio-Agosto 2007

    Google Scholar 

  • Bertolo P, Oggeri C, Peila D (2009) Full scale testing of draped nets for rock fall protection. Can Geotech J 46:306–317

    Article  Google Scholar 

  • Besseghini F, Deana M, Di Prisco C, Guasti G (2008) Modellazione meccanica di un sistema corticale attivo per il consolidamento di versanti di terreno. Rivista GEAM Geoingegneria ambientale e Mineraria, Anno XLV, N. III dicembre 2008 (125) pp 25–30 (in Italian)

    Google Scholar 

  • Bonati A, Galimberti V (2004) “Valutazione sperimentale di sistemi di difesa attiva dalla caduta massi” in atti “Bonifica dei versanti rocciosi per la difesa del territorio,” Trento 2004, Peila D. Editor

    Google Scholar 

  • BS 8006 (1995). Code of practice for Strengthened/reinforced soils and other fills

    Google Scholar 

  • Byrne RJ, Cotton D, Porterfield J, Wolshlag C, Ueblacker G (1998) Manual for design & construction monitoring of soil nail walls. U.S. Department of transportation, Federal Highway Administration, FHWA A-SA-96-06R, Washington DC

    Google Scholar 

  • EN 1997 1 (2005) Eurocode 7: Geotechnical design, Part 1: General rules

    Google Scholar 

  • Ferraiolo F, Giacchetti G (2004) “Rivestimenti corticali: alcune considerazioni sull’applicazione delle reti di protezione in parete rocciosa” in atti “Bonifica dei versanti rocciosi per la difesa del territorio,” Trento 2004, Peila D. Editor

    Google Scholar 

  • Joshi B (2003) Behaviour of calculated nail head strength in soil nailed structures. J Geotech Geoenviron Eng 129(9):819–828, ASCE

    Article  Google Scholar 

  • Majoral R, Giacchetti G, Bertolo P (2008) Las mallas en la estabilizaciòn de taludes. II Curso sobre protecciòn contra caida de rocas, Madrid, 26–27 de Febrero, Organiza STMR Servicios técnicos de mecànica de rocas

    Google Scholar 

  • Muhunthan B, Shu S, Sasiharan N, Hattamleh OA, Badger TC, Lowell SM, Duffy JD (2005) Analysis and design of wire mesh/cable net slope protection. Final Research Report WA-RD 612.1. Washington State Transportation Commission Department of Transportation/U.S. Department of Transportation Federal Highway Administration

    Google Scholar 

  • Phear A, Dew C, Ozsoy B, Wharmby NJ, Judge J, Barley AD (2005) Soil nailing – Best practice guidance. CIRIA C637, London

    Google Scholar 

  • Ruegger R, Flumm D (2000) High performance steel wire mesh for surface protection in combination with nails and anchors. Contribution to the 2nd colloquium “Construction in soil and rock,” Academy of Esslingen (Germany)

    Google Scholar 

  • Schlosser F (Chairman) (2002) Additif 2002 aux recommandations clouterre 1991 pour la conception, le calcul, l’exécution et le controle des soustènements realises par cluage des soil. Presses Ponts et chaussées

    Google Scholar 

  • Soulas R (Chairman) (1991) Recommandations clouterre 1991 pour la conception, le calcul, l’exécution et le controle des soustènements realises par cluage des soil. Presses Ponts et chaussées

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Giacchetti .

Editor information

Editors and Affiliations

Appendix: Stability and Displacement of the Mesh

Appendix: Stability and Displacement of the Mesh

Officine Maccaferri has developed the software BIOS for the automatic computation of the mesh capacity which uses the “two wedge method” for the calculation of the instable soil mass, in the hypothesis that the two wedges lye within the space delimitated by two adjacent nails; in order to maximize the driving force, the software automatically searches the worst wedges combination. It is assumed that the debris develops distributed load on the facing, so that the total force acting shall be (Fig. 6):

$$ {{T}_{{tot}}} = {{T}_1} + {{T}_2} $$
(1)

where:

$$ {{T}_1} = \frac{{\left[ {\left( {{{W}_1} + {{Q}_1}} \right)\cdot \left( {{\rm tan}{{\theta}_1} - {\rm tan}{\rm{phi}} {{^{\prime}}_1}} \right) + \left( {{{U}_1}\cdot {\rm tan} {\upphi} {{^{\prime}}_1} - {{K}_1}} \right)/{\rm cos}{{\theta}_1}} \right]}}{{\left( {1 + {\rm tan}{{\theta}_1}\cdot {\rm tan}{\upphi} {{^{\prime}}_1}} \right)}} $$
(2)
$$ {{T}_2} = \frac{{\left[ {\left( {{{W}_2} + {{Q}_2}} \right)\cdot \left( {{\rm tan}{{\theta}_2} - {{\lambda}_s}\cdot {\rm tan}\phi {{^{\prime}}_2}} \right) + {{\lambda}_s}\cdot \left( {{{U}_2}\cdot {\rm tan}\phi {{^{\prime}}_2} - {{K}_2}} \right)/{\rm cos}{{\theta}_2}} \right]}}{{\left( {1 + {{\lambda}_s}\cdot {\rm tan}{{\theta}_2}\cdot {\rm tan}\phi {{^{\prime}}_2}} \right)}} $$
(3)

where:

  • W1 (kN) Weight of wedge 1;

  • W2 (kN) Weight of wedge 2;

  • Q1 (kN) Overload acting on wedge 1;

  • Q2 (kN) Overload acting on wedge 2;

  • θ1 (°) Angle at the base of wedge 1;

  • θ2 (°) Angle at the base of wedge 2;

  • U1 (kN) Resultant of the pressure of the water acting at the base of wedge 1;

  • U2 (kN) Resultant of the pressure of the water acting at the base of wedge 2;

  • K1 (kN) Cohesion force acting at the base of wedge 1;

  • K2 (kN) Cohesion force acting at the base of wedge 2;

  • λs Slip factor at the base.

Fig. 6
figure 00836

Geotechnical model with wedges

The safety factor is calculated with:

$$ FS = \frac{{{{K}_1} + {{K}_2} + \left( {{{W}_1}\cdot \cos \left( {{{\theta}_1}} \right) - {{U}_1}} \right)\cdot \tan {\upphi} {{^{\prime}}_1} + \left( {{{W}_2}\cdot \cos \left( {{{\theta}_2}} \right) - {{U}_2}} \right)\cdot \tan {\upphi} {{^{\prime}}_2}}}{{{{W}_1}\cdot sen{{\theta}_1} + {{W}_2}\cdot sen{{\theta}_2}}} $$
(4)

In order to calculate ultimate limit state deformation of the mesh, the following initial assumptions apply:

  • The deformed shape is divided into three sections (Fig. 5): the first limb, rectilinear, with length X inclined with an angle α with respect to the slope, the angle of which is indicated by β; the second limb, curved, with length (π + α) r that characterises the sack shape of the soil; the third limb, rectilinear, lies on the slope, with the same inclination and a length X − L;

  • The second stretched limb is tangential to both the first and third limbs of the mesh;

  • The mesh, completely stretched, deforms and reaches a maximum length at the failure limit of not more than:

    $$ {{L}_{{tot}}} = L + \varepsilon \cdot L $$
    (5)

    where:

    • \( \varepsilon \) percentage deformation under failure conditions obtained from large scale puncturing tests and tension;

    • L distance of the mesh between two nails in a direction parallel to the slope.

  • The area of the section corresponding to the sack is equal to that of the circular sector with an angle at the centre equal to (π + α) and radius r (Fig. 7);

Fig. 7
figure 00837

Geotechnical model with instable soil divided in elemental areas

The area 1 is obtained by resolving the following system of equations:

$$ L + \varepsilon \cdot L = X + \left( {\Pi + \alpha } \right)\cdot r + \left( {X - L} \right) $$
(6)
$$ r = X\cdot tg\left( {\frac{\alpha }{2}} \right) $$
(7)
$$ P = {{T}_{{amm}}}\cdot \frac{{\left( {1 + {\rm cos}\alpha } \right)}}{{sen\beta - {\rm cos}\beta \cdot {\rm tan}\delta }} $$
(8)
$$ P = \gamma \cdot V $$
(9)
$$ AREA1 = \frac{{\left( {\Pi + \alpha } \right)\cdot {{r}^2}}}{2} + X\cdot r - \sqrt {{per\cdot \left( {per - A} \right)\cdot \left( {per - B} \right)\cdot \left( {per - C} \right)}} $$
(10)

with:

$$ per = (A + B + C)/2 $$
(11)
$$ A = \frac{X}{{sen\left( {180 - \beta } \right)}}\cdot sen\left( {\beta - \alpha } \right) $$
(12)
$$ B = \frac{X}{{sen\left( {180 - \beta } \right)}}\cdot sen\alpha $$
(13)
$$ C = X $$
(14)

where:

L (m)

Length of the mesh;

γ (kN/m3)

Unit weight of soil;

β (°)

Angle of inclination of the slope;

ϕ’a (°)

Friction angle of the soil;

δ (°)

Friction angle of the soil-slope interface;

EA (kN)

Axial stiffness of the mesh;

Tmax (kN/m)

Maximum tensile strength of the mesh;

Fsmesh

Factor of safety of the mesh;

Tamm (kN/m)

Permissible tensile strength of the mesh;

ε

Maximum percentage deformation of the mesh.

Area 2 is determined by:

$$ AREA2 = \frac{{{{A}^2}\cdot sen(\theta_1 - \beta )\cdot sen(\beta - \phi ^{\prime})}}{{2\cdot sen(180 - \theta_1 + \phi ^{\prime})}} $$
(15)

Area 3 is the difference between the volume of long-term unstable soil and area 2. The total volume thereby obtained must be compared with the unstable volume under the long-term conditions; if the unstable volume is greater than that necessary for failure of the mesh, the flexible facing will be put at risk.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giacchetti, G., Grimod, A., Cheer, D. (2013). Soil Nailing with Flexible Structural Facing: Design and Experiences. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31319-6_83

Download citation

Publish with us

Policies and ethics