Skip to main content

Landslide Transportation Network and Lifelines: Rockfall and Debris Flow

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

Roads, rails and pipelines often are crossing areas with rock faces and steep slopes in mountainous areas. Rockfalls and debris flows are frequent fast moving landslides, which constitute hazards and can damage infrastructures requiring additional serviceability, crash or bury vehicles and result in death. These type of landslide events are characterised by very fast trigger and evolution and so, even if they are typically preceded by intense rain, they occurs without any clear warning. The first think to do in these cases, is to understand the entity and the distribution of these phenomena along the transportation corridor by means of computational instruments able to compute slope hazard; then consolidation works have to be designed taking the risk distribution along the corridor into consideration; the consolidations or the protection works have to be started where the risk is higher and, therefore, more urgent. In this paper, methods that refer about the geotechnical aspects of fast landslide movements constituting hazard for the transportation network and the consequent mitigation works will be discussed. Some applicative examples are reported too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bonachea J, Bruschi VM, Remondo J, Gonzales-Diez A, Salas L, Bertens J, Cendrero A, Ortero C, Giusti C, Fabbri A, Gonzales-Lastra JR, Aramburu JM (2005) An approach for quantifying geomorphological impacts for EIA of transportation infrastructures: a case study in northern Spain. Geomorphology 66:95–117

    Article  Google Scholar 

  • Bonachea J, Remondo J, Diaz de Teran JR, Gonzales-Diez A, Cendrero A (2009) Landslide risk models for decision making. Risk Anal 29(11):1629–1643

    Article  Google Scholar 

  • Bunce CM, Cruden DM, Morgenstern NR (1997) Assessment of the hazard from rock fall on a highway. Can Geotech J 34:344–356

    Google Scholar 

  • Canuti P, Casagli N, Giani GP, Iotti A, Migliazza M, Segalini A, Tarchiani U (2004) Il caso della frana di Monte Beni: un esempio di difesa di infrastrutture viarie con rilevati paramassi. Convegno su “Bonifica di versanti rocciosi per la protezione del territorio”. 11–12 marzo 2004, Trento, pp 497–507

    Google Scholar 

  • Coe JA, Godt JW, Parise M, Moscariello A (2003) Estimating debris-flow using fan stratigraphy, historc records, and drainage-basin morphology, Interstate 70 highway corridor, central Calorado, USA. In: Rickenmann, Chen (eds) Debris-flow hazard mitigation: mechanics, prediction and assessment, Millpress, Rotterdam, pp 1085–1096

    Google Scholar 

  • Corominas J, Copons R, Vilaplana JM, Altimir J, Amigò J (2003) Form landslide hazard assessment to management, the Andorran experience. In: International conference on fast slope movements, prediction and prevention for risk mitigation, AGI, pp 111–118

    Google Scholar 

  • Corominas J, Copons R, Moya J, Vilaplana JM, Altimir J, Amigo J (2005) Quantitative assessment of the residual risk in rockfall protectied area. Landslide 2:343–357

    Article  Google Scholar 

  • Crosta G, Carrara A, Agliardi F, Campedel P, Frattini P (2006) Valutazione della pericolosità da caduta massi tramite un approccio integrato statistico e deterministico. Giornale di Geologia Applicata 4:41–48

    Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an oveview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslides suscebtibility, hazard and risk zoning for land-use planning. Eng Geol 104:99–111

    Article  Google Scholar 

  • Ferrero AM, Forlani G, Grasso PG, Migliazza M, Rabbi E, Roncella R (2007) Analysis of stability condition of rock slope lying a far East motorway based on laser scanner surveys. In: 11th ISRM Congress, Lisbon

    Google Scholar 

  • Ferrero AM, Forlani G, Roncella R, Voyat H (2008) Advanced geo structural survey methods applied to rock mass characterization. Rock Mech Rock Eng. Springer, Wien, vol 4(2), pp 631–665

    Google Scholar 

  • Ferrero AM, Migliazza M, Roncella R, Segalini A (2011) Rock cliffs hazard analysis based on remote geostructural surveys: the Campione del Garda case study (Lake Garda, Northern Italy). Geomorphology 125:457–471

    Article  Google Scholar 

  • Ferrero AM, Migliazza M, Roncella R, Rabbi E (2010) Rock slopes risk assessment based on advanced geostructural survey techniques. Landslides. Published online

    Google Scholar 

  • Finlay PJ, Mostyn GR, Fell R (1999) Landslide risk assessment: prediction of travel distance. Can Geotech J 36:556–562

    Article  Google Scholar 

  • Goodman RE, Shi GH (1985) Block theory and its application to rock engineering. Prentice Hall, London, 338 pp

    Google Scholar 

  • Guzzetti F, Reichenbach P, Ghigi S (2004) Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, central Italy. Environ Manage 34(2):191–208

    Article  Google Scholar 

  • Hoek E (2007) Practical rock engineering. Available on Rockscience web site, pp 1–237

    Google Scholar 

  • Hungr O, Evans SG (1999) Magnitude and frequency of rockfalls and rockslides along the main transportation corridors of south-western British-Columbia. Can Geotech J 36:242–238

    Article  Google Scholar 

  • Interreg IIc (2001) Prévention des mouvements de versants et des instabilités de falaises: confrontation des méthodes d’étude d’éboulements rocheux dans l’arc Alpin, Interreg Communauté européenne

    Google Scholar 

  • Jaboyedoff M, Dudt JP, Labiouse V (2005) An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree. Nat Hazards Earth Syst Sci 5:621–632

    Article  Google Scholar 

  • Leone F, Aste JP, Leroi E (1996) Vulnerability assessment of elements exposed to mass-moving: working toward a better risk perception. In: Senneset K. (Ed.), Landslides. Balkema, Rotterdam, pp 263–269

    Google Scholar 

  • Mazzoccola D, Sciesa E (2001). La metodologia RHAP (Rockfall Hazard Assessment Procedure). Prevenzione dei fenomeni di instabilità delle pareti rocciose. Programme Interreg II C, pp 84–95

    Google Scholar 

  • Melton MA (1957) An analysis of the relation among elements of climate, surface properties and geomorphology. Office of Nav Res Dept Geol Columbia Univ, NY. Tech Rep 11

    Google Scholar 

  • Morgan GC, Rawlings GE, Sobkowicz JC (1992) Evaluating total risk to communities from large debris flows. In: Geotechnique and natural hazards, Vancouver, 6–9 May 1992, pp 225–236

    Google Scholar 

  • OFAT, OFEE, OFEFP (1997) Recommandations. Prise en compte des dangers dus aux mouvements de terrain dans le cadre des activités de l’aménagement du territoire. Edited by OFAT/OFEE/OFEPF, Bern

    Google Scholar 

  • Pierson LA, Vickle RV (1993) Rockfall hazard rating system – participants’ manual. U.S. Department of Transportation Federal Highway Administration, pp 1–104

    Google Scholar 

  • Planat (2005) Protection against Natural Hazards in Switzerland- Vision and Strategy. Planat Serial 1/2005, Secretariat of the National platform for natural hazards. Federal office for water and Geology, pp 1–16. www.planat.ch

  • Regione Lombardia, Struttura Rischi Idrogeologici (2000) Procedure per la valutaziuone e la zonazione della pericolosita’ e del rischio da frana in Regione Lombardia – Bol. Uff. Regione Lombardia n. 51

    Google Scholar 

  • Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurences. Geomorphology 94:496–507

    Article  Google Scholar 

  • Santana D, Corominas J, Mavrouli O, Garcia-Selles D (2011) Magnitude-frequency relation for rockfalls using a terrestrial laser scanner. In: Proceedings of interdisciplinary rockfall workshop, Innsbruck

    Google Scholar 

  • Shi GH (1989) Block system modeling by discontinuous deformation analysis – Department of Civil Engineering University of California, Berkeley

    Google Scholar 

  • Varnes DJ, IAEG Commission on Landslides and Other Mass-Movements (1984) Landslide hazard zonation: a review of principles and practice. UNESCO Press, Paris

    Google Scholar 

  • Whitman RV (1984) Evaluating calculated risk in geotechnical engineering. J Geotech Eng ASCE 110(2), 145–186

    Google Scholar 

  • Wills CJ, Manson MW, Falls JN, Foster BD, Hardin BC, Davenport CW, Domrose C, Fuller ME, Huyette CM, Smelser MG, Gutierrez C, Brown KD, Huffman ME (2006) Hazards assessment demonstration project. California Department of Transportation division of Research & Innovation, pp1–7

    Google Scholar 

  • Winter MG, Mac Gregor F, Shackman L (2008) Scottish road network landslide study: summary report, Transport Scotland, pp 1–32

    Google Scholar 

  • Wong HN, Ho KKS, Chan YC (1997) Assessment of consequences of landslides. In: Cruden DM, Fell R (eds) Landslide risk assessment. In: Proceedings of the workshop on landslide risk assessment, Honolulu, Hawaii, USA, 19–21 Feb 1997, Balkema, Rotterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Ferrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferrero, A.M., Migliazza, M. (2013). Landslide Transportation Network and Lifelines: Rockfall and Debris Flow. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31319-6_23

Download citation

Publish with us

Policies and ethics