Skip to main content

Nanoscale Phononic Crystals and Structures

  • Chapter
  • First Online:
Acoustic Metamaterials and Phononic Crystals

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 173))

  • 5377 Accesses

Abstract

The objective of this chapter is to explore advances in the development of phononic crystals and phononic structures at the nanoscale. The downscaling of phononic structures to nanometric dimensions requires an atomic treatment of the constitutive materials. At the nanoscale, the propagation of phonons may not be completely ballistic (wave-like) and nonlinear phenomena such as phonon–phonon scattering occur. We apply second-order perturbation theory to a one-dimensional anharmonic crystal to shed light on phonon self-interaction and three-phonon scattering processes. We emphasize the competition between dispersion effects induced by the structure, anharmonicity of the atomic bonds, and boundary scattering. These phenomena are illustrated by several examples of atomistic models of nanoscale phononic structures simulated using the method of molecular dynamics (MD). Special attention is also paid to size effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Hyldgaard, G. D. Mahan,“Phonon Knudsen flow in AlAs/GaAssuperlattices” in Thermal Conductivity, vol. 23,(Technomic, Lancaster, PA, 1996)

    Google Scholar 

  2. G. Chen, C.L. Tien, X. Wu, J.S. Smith, Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures. J. Heat Transfer 116, 325 (1994)

    Article  CAS  Google Scholar 

  3. W.S. Capinski, H. J. Maris, Thermal conductivity of GaAs/AlAssuperlattices. Physica B 219&220, 699 (1996)

    Google Scholar 

  4. E.S. Landry, M.I. Hussein, A.J.H. McGaughey, Complex superlattice unit cell designs for reduced thermal conductivity. Phys. Rev.B 77, 184302 (2008)

    Article  Google Scholar 

  5. A.J.H. McGaughey, M.I. Hussein, E.S. Landry, M. Kaviany, G.M. Hulbert, Phonon band structure and thermal transport correlation in a layered diatomic crystal. Phys. Rev. B 74, 104304 (2006)

    Article  Google Scholar 

  6. T. Gorishnyy, C.K. Ullal, M. Maldovan, G. Fytas, E.L. Thomas, Hypersonicphononiccrystals. Phys. Rev. Lett. 94, 115501 (2005)

    Google Scholar 

  7. J.-N. Gillet, Y. Chalopin, S. Volz, Atomic-scale three-dimensional phononic crystals with a very low thermal conductivity to design crystalline thermoelectric devices. J.Heat Transfer 131, 043206 (2009)

    Article  Google Scholar 

  8. B.L. Davis, M.I. Hussein, Thermal characterization of nanoscalephononic crystals usingsupercell lattice dynamics. AIP Adv. 1, 041701 (2011)

    Google Scholar 

  9. A. Netsch, A. Fleischmann, C. Enss, “Thermal conductivity in glasses with a phononic crystal like structure”, PHONONS 2007. J. Phys. Conf. Ser. 92, 012130 (2007)

    Article  Google Scholar 

  10. J.-F. Robillard, K. Muralidharan, J. Bucay, P.A. Deymier, W. Beck, D. Barker, Phononic metamaterials for thermal management: an atomistic computational study. Chin. J. Phys. 49, 448 (2011)

    Google Scholar 

  11. D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972)

    Google Scholar 

  12. D.C. Wallace, Renormalization and statistical mechanics in many-particle systems. I. Hamiltonian perturbation method. Phys. Rev. 152, 247 (1966)

    Google Scholar 

  13. A.A. Maradudin, A.E. Fein, Scattering of neutrons by an anharmonic crystal. Phys. Rev. 128, 2589 (1962)

    Article  CAS  Google Scholar 

  14. R.K. Narisetti, M.J. Leamy, M.J. Ruzzene, A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. ASME J. Vib. Acoust. 132, 031001 (2010)

    Article  Google Scholar 

  15. K. Manktelow, M.J. Leamy, M. Ruzzene, Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63, 193 (2011)

    Article  Google Scholar 

  16. N.M. Krylov, N.N. Bogoliubov, Introduction to Nonlinear Mechanics trans. by S. Lefshetz (Princeton U.P, Princeton, NJ, 1947)

    Google Scholar 

  17. I.C. Khoo, Y.K. Wang, Multiple time scale analysis of an anharmonic crystal. J. Math. Phys. 17, 222 (1976)

    Article  Google Scholar 

  18. J.M. Haile, Molecular dynamics simulation: elementarymethods. (Wiley Inter-Science , 1992)

    Google Scholar 

  19. J.A. Thomas, J.E. Turney, R.M. Iutzi, C.H. Amon, A.J.H. McGaughey, Predicting phonon dispersion relations and lifetimes from the spectral energy density. Phys. Rev. B 81, 081411(R) (2010)

    Google Scholar 

  20. G.P. Berman, F.M. Izraileva, The Fermi-Pasta-Ulam problem: fifty years of progress. Chaos 15, 015104 (2005)

    Article  CAS  Google Scholar 

  21. J. Garg, N. Bonini, N. Marzani, High thermal conductivity in short-period superlattice. Nano Lett. 11, 5135 (2011)

    Article  CAS  Google Scholar 

  22. J.M. Ziman, Electrons and Phonons (Oxford University Press, London, 1960)

    Google Scholar 

  23. S.M. Lee, D.G. Cahill, R. Vekatasubramanian, Thermal conductivity of Si-Ge superlattices. Appl. Phys. Lett. 70, 2957 (1997)

    Article  CAS  Google Scholar 

  24. W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, D.S. Latzer, Thermal-conductivity measurements of GaAs/AlAs superlattices using a picoseconds optical pump-and-probe technique. Phys. Rev. B 59, 8105 (1999)

    Article  CAS  Google Scholar 

  25. Y. Wang, X. Xu, R. Venkatasubramanian, Reduction in coherent phonon lifetime in Bi2Te3/Sb2Te3 superlattices. Appl. Phys. Lett. 93, 113114 (2008)

    Article  Google Scholar 

  26. K. Muralidharan, R.G. Erdmann, K. runge, P.A. Deymier, Asymmetric energy transport in defected boron nitride nanoribbons: Implications for thermal rectification. AIP Adv. 1, 041703 (2011)

    Google Scholar 

  27. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783 (2002)

    Article  CAS  Google Scholar 

  28. L. Lindsay, D. A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)

    Google Scholar 

  29. K. Albe, W. Moller, Modelling of boron nitride: atomic scale simulations on thin film growth. Comput. Mater. Sci. 10, 111 (1998)

    Article  CAS  Google Scholar 

  30. A.J.H. McGaughey, M. Kaviani, Phonon transport in molecular dynamics simulations: formulation and thermal conductivity prediction. Adv. Heat Transfer 39, 169 (2006)

    Article  CAS  Google Scholar 

  31. J.-W. Jiang, J. Chen, J.-S. Wang, B. Li, Edge states induce boundary temperature jump in molecular dynamics simulations of heat conduction. Phys. Rev. B 80, 052301 (2009)

    Google Scholar 

  32. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press , 1995)

    Google Scholar 

  33. K. Kang, D. Abdula, D.G. Cahill, M. Shim, Lifetimes of optical phonons in graphene and graphite by time-resolved incoherent anti-Stokes Raman scattering. Phys. Rev. B 81, 165405 (2010)

    Article  Google Scholar 

  34. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)

    Article  Google Scholar 

  35. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  CAS  Google Scholar 

  36. D.L. Nika, S. Ghosh, E.P. Pokatilov, A.A. Balandin, Lattice thermal conductivity of graphene flakes: comparison with bulk graphene. Appl. Phys. Lett. 94, 203103 (2009)

    Article  Google Scholar 

  37. D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)

    Article  Google Scholar 

  38. S. Chen, A.L. Moore, W. Cai, J.W. Suk, J. An, C. Mishra, C. Amos, C.W. Magnuson, J. Kang, L. Shi, R.S. Ruoff, Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 5, 321 (2011)

    Article  Google Scholar 

  39. H. Suzuura, T. Ando, Phonons and electron–phonon scattering in carbon nanotubes. Phys. Rev. B 65, 235412 (2002)

    Article  Google Scholar 

  40. J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046 (1959)

    Article  CAS  Google Scholar 

  41. M.G. Holland, Analysis of lattice thermal conductivity. Phys. Rev. 132, 2461 (1963)

    Article  CAS  Google Scholar 

  42. C. Jin, F. Lin, K. Suenaga, S. Iijima, Fabrication of a freestanding Boron Nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009)

    Article  Google Scholar 

  43. K. Yang, Y. Chen, Y. Xie, X.L. Wei, T. Ouyang, J. Zhong, Effect of triangle vacancy on thermal transport in boron nitride nanoribbons. Solid State Commun. 151, 460 (2011)

    Article  CAS  Google Scholar 

  44. D.B. Go, M. Sen, On the condition for thermal rectification using bulk materials. J. Heat Transfer 132, 1245021 (2010)

    Article  Google Scholar 

  45. R. Krishnan, S. Shirota, Y. Tanaka, N. Nishiguchi, High-efficient acoustic wave rectifier. Solid State Commun. 144, 194–197 (2007)

    Article  CAS  Google Scholar 

  46. S. Danworaphong, T.A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O.B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, H. Misawa, Real-time imaging of acoustic rectification. Appl. Phys. Lett. 99, 201910 (2011)

    Article  Google Scholar 

  47. A. Rajabpour, S.M. VaezAllaei, Y. Chalopin, F. Kowsary, S. Volz, Tunable superlattice in-plane thermal conductivity based on asperity sharpness at interfaces: Beyond Ziman’s model of specularity. J. Appl. Phys. 110, 113529 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This material is partly based upon work supported by the National Science Foundation under Grant No. 1148936 and Grant No. 0924103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Swinteck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Swinteck, N., Deymier, P.A., Muralidharan, K., Erdmann, R. (2013). Nanoscale Phononic Crystals and Structures. In: Deymier, P. (eds) Acoustic Metamaterials and Phononic Crystals. Springer Series in Solid-State Sciences, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31232-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31232-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31231-1

  • Online ISBN: 978-3-642-31232-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics