Skip to main content

Introduction to Metallic Biomaterials

  • Chapter
  • First Online:
Biodegradable Metals

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

After the invention of stainless steel in 1920s, metal implants have experienced vast development and clinical uses. The formation of ASTM Committee F04 on Medical and Surgical Materials and Devices in 1962 has then played important role to their development, practice and standardization. A great variety of corrosion resistant metals have been developed and used for medical implants including the class of 316L stainless steels, cobalt-chromium alloys and titanium and its alloys. New generation of metallic biomaterials have been made nickel free via novel processing including nano-processing and amorphization. Other development raised the concept of biodegradable rather than inert metals where temporary medical implants, that function only during specific period and then degrade, are targeted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosio L (2009) Biomedical composites. Woodhead Publishing, Cambridge

    Google Scholar 

  • ASTM (2003) ASTM F 138: Standard specification for wrought 18chromium-14nickel-2.5molybdenum stainless steel bar and wire for surgical implants (UNS S31673). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2005) ASTM F 2063: standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2006) ASTM F 67: standard specification for unalloyed titanium, for surgical implant applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2007a) ASTM F 75: standard specification for cobalt-28 chromium-6 molybdenum alloy castings and casting alloy for surgical implants (UNS R30075). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2007b) ASTM F 90: standard specification for wrought cobalt-20chromium-15tungsten-10nickel alloy for surgical implant applications (UNS R30605). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2007c) ASTM F 562: standard specification for wrought 35cobalt-35nickel-20chromium-10molybdenum alloy for surgical implant applications (UNS R30035). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2008) ASTM F 136: standard specification for wrought titanium-6 aluminum-4 vanadium ELI (extra low interstitial) alloy for surgical implant applications (UNS R56401). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2009) ASTM F 2181: standard specification for wrought seamless stainless steel tubing for surgical implants. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2011a) ASTM F 899: standard specification for wrought stainless steels for surgical instruments. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2011b) ASTM F 1537: standard specification for wrought cobalt-28chromium-6molybdenum alloys for surgical implants (UNS R31537, UNS R31538, and UNS R31539). ASTM International, West Conshohocken

    Google Scholar 

  • Black J (1984) Biological performance of materials. Plenum Press, New York

    Google Scholar 

  • Brandes EA, Brook GB (1992) Smithells metals reference book, 7th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Chen Q, Liu L, Zhang S-M (2010) The potential of Zr-based bulk metallic glasses as biomaterials. Front Mater Sci China 4:34–44

    Article  Google Scholar 

  • Chiba A, Lee S-H, Matsumoto H, Nakamura M (2009) Construction of processing map for biomedical Co-28Cr-6Mo-0.16N alloy by studying its hot deformation behavior using compression tests. Mater Sci Eng A 513–514:286–293

    Google Scholar 

  • Habibovic P, Barrère F, Blitterswijk CAV, Groot Kd, Layrolle P (2002) Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc 83:517–522

    Google Scholar 

  • Hench LL, Ethridge EC (1975) Biomaterials: the interfacial problem. Adv Biomed Eng 5:35–150

    Google Scholar 

  • Hermawan H, Mantovani D (2009) Degradable metallic biomaterials: the concept, current developments and future directions. Minerva Biotecnol 21:207–216

    Google Scholar 

  • Hollander DA, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, Erli H-J (2006) Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials 27:955–963

    Article  CAS  Google Scholar 

  • Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    Article  CAS  Google Scholar 

  • Jenkins M (2007) Biomedical polymers. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • John CW (2000) Biocompatibility of dental casting alloys: a review. J Pros Dent 83:223–234

    Article  Google Scholar 

  • Johnson W (2002) Bulk amorphous metal—an emerging engineering material. J Min Met Mat Soc 54:40–43

    Article  CAS  Google Scholar 

  • Kokubo T (2008) Bioceramics and their clinical applications. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new [beta] type titanium alloys for implant materials. Mater Sci Eng A 243:244–249

    Article  Google Scholar 

  • Lahann J, Klee D, Thelen H, Bienert H, Vorwerk D, Hocker H (1999) Improvement of haemocompatibility of metallic stents by polymer coating. J Mater Sci Mater Med 10:443–448

    Article  CAS  Google Scholar 

  • Lambotte A (1909) Technique et indication des prothèses dans le traitement des fractures. Presse Med 17:321

    Google Scholar 

  • Lane WA (1895) Some remarks on the treatment of fractures. Brit Med J 1:861–863

    Article  CAS  Google Scholar 

  • Lee SH, Nomura N, Chiba A (2008) Significant improvement in mechanical properties of biomedical Co-Cr-Mo alloys with combination of N addition and Cr-enrichment. Mater Trans 49:260–264

    Article  CAS  Google Scholar 

  • Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA, de Groot K (2007) Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28:2810–2820

    Article  CAS  Google Scholar 

  • Lopez-Heredia MA, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P (2008) Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials 29:2608–2615

    Article  CAS  Google Scholar 

  • Matsumoto H, Watanabe S, Hanada S (2005) Beta TiNbSn alloys with low Young’s modulus and high strength. Mater Trans 46:1070–1078

    Article  CAS  Google Scholar 

  • Niinomi M (2010) Metals for biomedical devices. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Park JB, Lakes RS (2007) Biomaterials: an introduction, 3rd edn. Springer, New York

    Google Scholar 

  • Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670

    Article  CAS  Google Scholar 

  • Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635

    Article  CAS  Google Scholar 

  • Schneck DJ (2000) The biomedical engineering handbook. CRC Press LLC, Boca Raton

    Google Scholar 

  • Schroers J, Kumar G, Hodges T, Chan S, Kyriakides T (2009) Bulk metallic glasses for biomedical applications. J Min Met Mater Soc 61:21–29

    Article  CAS  Google Scholar 

  • Sherman WO (1912) Vanadium steel bone plates and screws. Surg Gynecol Obstet 14:629–634

    Google Scholar 

  • Stack RS, Califf RM, Phillips HR, Pryor DB, Quigley PJ, Bauman RP, Tcheng JE, Greenfield JC Jr (1988) Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol 62:3F–24F

    Article  CAS  Google Scholar 

  • Wang YB, Zheng YF, Wei SC, Li M (2011) In vitro study on Zr-based bulk metallic glasses as potential biomaterials. J Biomed Mater Res B 96:34–46

    CAS  Google Scholar 

  • Williams DF (ed) (1987) Definitions in biomaterials. In: Progress in biomedical engineering. Elsevier, Amsterdam

    Google Scholar 

  • Yang K, Ren Y (2010) Nickel-free austenitic stainless steels for medical applications. Sci Technol Adv Mater 11:1–13

    Article  Google Scholar 

  • Zberg B, Uggowitzer PJ, Loffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8:887–891

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendra Hermawan .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Hermawan, H. (2012). Introduction to Metallic Biomaterials. In: Biodegradable Metals. SpringerBriefs in Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31170-3_1

Download citation

Publish with us

Policies and ethics