Skip to main content

Numerical Modeling of Pyrolysis of Sawdust in a Packed Bed

  • Conference paper
  • First Online:
Cleaner Combustion and Sustainable World (ISCC 2011)

Included in the following conference series:

  • 1092 Accesses

Abstract

An unsteady, one-dimensional mathematical model has been developed to describe the pyrolysis of sawdust in a packed bed. The sawdust bed was pyrolyzed using the hot gas and an electric heater outside the bed as the source of energy. The developed model includes mass, momentum and energy conservations of gas and solid within the bed. The gas flow in the bed is modeled using Darcy’s law for fluid through a porous medium. The heat transfer model includes heat conduction inside the bed and convection between the bed and the hot gas. The kinetic model consists of primary pyrolysis reaction. A finite volume fully implicit scheme is employed for solving the heat and mass transfer model equations. A Runge–Kutta fourth order method is used for the chemical kinetics model equations. The model predictions of mass loss history and temperature were validated with published experimental results, showing a good agreement. The effects of inlet temperature on the pyrolysis process have been analyzed with model simulation. A sensitivity analysis using the model suggests that the predictions could be improved by considering the second reaction which could generate volatile flowing in the void.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

g:

gas

c:

char

s:

sawdust

g:

total gas

s:

solid

0:

initial value

in:

inlet

k:

reaction rate (s-1)

h sg :

heat transfer coefficient (w m−2.K)

D :

Diffusivity(m2 K−1)

Y i :

mass fractions (−)

B :

permeability (m2)

ε :

void fraction (−)

μ :

viscosity (kg/ms)

λ :

thermal conductivity (w m−1 K−1)

c p :

specific heat capacity (J kg−1 K−1)

ρ :

density (kg m−3)

T :

Temperature (K)

S :

resource

x :

axial

t :

time (s)

Rg:

gas constant (−)

Pr:

Prandtl number (−)

Re:

Reynolds number (−)

p:

pressure (N/m2)

Mg:

gaseous mole fraction (g mol−1)

u:

velocity (m s−1)

ν :

reaction progress variable

d p :

particle diameter (m)

h:

bed height (m)

References

  1. Li L, et al. Low-temperature gasification of a woody biomass under a nickel-loaded brown coal char. Fuel Process Technol. 2010;91(8):889–94.

    Article  Google Scholar 

  2. Zhang L, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag. 2010;51(5):969–82.

    Article  Google Scholar 

  3. Diblasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci. 2008;34(1):47–90.

    Article  Google Scholar 

  4. Mohan Dinesh, Pittman Jr CU, Steele Philip H. Pyrolysis of wood-biomass for bio-oil: a critical review. Energy Fuels. 2006;20:848–89.

    Article  Google Scholar 

  5. Yung MM, Jablonski WSJ, Magrini-Bair KA. Review of catalytic conditioning of biomass-derived syngas. Energy Fuels. 2009;23:1874–87.

    Article  Google Scholar 

  6. Lv Pengmei, Chang J, Wang T, Wu C. A kinetic study on biomass fast catalytic pyrolysis. Energy Fuels. 2004;18:1865–9.

    Article  Google Scholar 

  7. Yang Y. Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed*. Fuel. 2003;82(18):2205–21.

    Article  Google Scholar 

  8. Al-Haddad M, et al. Biomass fast pyrolysis: experimental analysis and modeling approach†. Energy Fuels. 2010;24(9):4689–92.

    Article  Google Scholar 

  9. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S. Chemical kinetics of biomass pyrolysis. Energy Fuels. 2008;22:4292–300.

    Article  Google Scholar 

  10. Hu Guoxin, Huang H, Li Yanhong. Hydrogen-rich Gas production from pyrolysis of biomass in an autogenerated steam atmosphere. Energy Fuels. 2009;23:1748–53.

    Article  Google Scholar 

  11. Shin D, Choi S. The combustion of simulated waste particles in a fixed bed. Combust Flame. 2000;121:167–80.

    Article  Google Scholar 

  12. Zhou H, et al. Numerical modeling of straw combustion in a fixed bed. Fuel. 2005;84(4):389–403.

    Article  Google Scholar 

  13. Yang Y, et al. Fuel size effect on pinewood combustion in a packed bed. Fuel. 2005;84(16):2026–38.

    Article  Google Scholar 

  14. Yang Y, et al. Mathematical modelling of slow pyrolysis of segregated solid wastes in a packed-bed pyrolyser. Fuel. 2007;86(1–2):169–80.

    Article  Google Scholar 

  15. Yang Y, et al. Simulation of channel growth in a burning Bed of solids. Chem Eng Res Des. 2003;81(2):221–32.

    Article  Google Scholar 

  16. Yang YB, Sharifi VN, Swithenbank J. Numerical simulation of the burning characteristics of thermally-thick biomass fuels in packed-beds. Process Saf Environ Protect. 2005;83(6):549–58.

    Article  Google Scholar 

  17. Yang Y. Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds. Fuel. 2004;83(11–12):1553–62.

    Article  Google Scholar 

  18. Yang Y, et al. Effect of fuel properties on biomass combustion. Part II. Modelling approach—identification of the controlling factors. Fuel. 2005;84(16):2116–30.

    Article  Google Scholar 

  19. van der Lans RP, Pedersen LT, Jensen A, Glarborg P, Dam-Johansen K. Modeling and experiments of straw combustion in a grate furnace. Biomass Bioenergy. 2000;19:199–208.

    Article  Google Scholar 

  20. Bandyopadhyay SC, Chowdhury R, Biswas GK. Transient behavior of a coconut shell pyrolyzer: a mathematical analysis. Indust Eng Chem Res. 1996;35(10):3347–55.

    Article  Google Scholar 

  21. Peters B. Measurements and particle resolved modelling of the thermo- and fluid dynamics of a packed bed. J Anal Appl Pyrolysis. 2003;70(2):211–31.

    Article  Google Scholar 

  22. Jenkins BM, Baxter LL, Miles TR. Combustion properties of biomass. Fuel Process Technol. 1998;54(1–3):17–46.

    Article  Google Scholar 

  23. Porteiro J, et al. Mathematical modelling of the combustion of a single wood particle. Fuel Process Technol. 2006;87(2):169–75.

    Article  MathSciNet  Google Scholar 

  24. Green PA. Chemical engineers’ handbook (6th edn.). 1984.

    Google Scholar 

  25. Babu B. Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Convers Manag. 2003;44(14):2251–75.

    Article  Google Scholar 

  26. Di Blasi C. Development of a novel reactor for the oxidative degradation of straw. Bioresource Technol. 2004;91(3):263–71.

    Article  MathSciNet  Google Scholar 

  27. Jenkins BM, Baxter LL, Miles Jr TR, Miles TR. Combustion properties of biomass. Fuel Process Technol. 1998;84:17–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg & Tsinghua University Press

About this paper

Cite this paper

Meng, Q., Chen, X. (2013). Numerical Modeling of Pyrolysis of Sawdust in a Packed Bed. In: Qi, H., Zhao, B. (eds) Cleaner Combustion and Sustainable World. ISCC 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30445-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30445-3_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30444-6

  • Online ISBN: 978-3-642-30445-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics