Skip to main content

A Three Step Procedure to Enrich Augmented Reality Games with CityGML 3D Semantic Modeling

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

3D representations have been recognized as an essential component of Augmented Reality (AR) oriented applications. However, not many examples of AR-oriented applications employ structured 3D data models despite the existence of standard 3D information models like CityGML. One of the reasons for this shortcoming can be explained by lack of a semantic-based modeling method for enriching AR-oriented data models with 3D features. Therefore, a three step procedure is proposed to address this limitation as (1) back-ward engineering of an AR-oriented application to its current data model, (2) enriching the current data model with 3D features, (3) and mapping the enriched model to a standard 3D information model. A notable contribution of this work is that the procedure of data modeling has been subject to the UModelAR meta-model which has brought a complementary standpoint to the employment of 3D geospatial modeling in AR environments. Furthermore, the 3D enriched data model has been mapped to CityGML information model with CityGML Application Domain Extension (ADE) concept. To demonstrate the feasibility of this approach, an operating mobile AR-oriented game has been used for the case study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://layar.pbworks.com/w/page/7783211/3D-objects-in-a-layer

  2. 2.

    http://www.geoide.ulaval.ca/

  3. 3.

    http://geoeduc3d.scg.ulaval.ca

References

  • Azuma R (1997) A survey of augmented reality. Tele-operators Virtual Environ 6:355–385

    Google Scholar 

  • Badard T (2006) Geospatial service oriented architectures for mobile augmented reality. In: Proceedings of the 1st international workshop on mobile geospatial augmented reality, Banff, Canada, pp 73–77

    Google Scholar 

  • Caplat G (2008) Modèles & métamodèles. Presses polytechniques et universitaires romandes, France

    Google Scholar 

  • De Souza e Silva A (2009) Hybrid reality and location based gaming: redefining mobility and game spaces in urban environments. J Simul Gaming 40:404–424

    Article  Google Scholar 

  • Dollner J, Baumann K, Buchholz H (2006) Virtual 3D city models as foundation of complex urban information spaces. In: Proceedings of CORP 2006 and Geomultimedia 06, Vienna, Austria

    Google Scholar 

  • Dumont M-A, Power MT, Barma S (2011) GéoÉduc3D: Évolution des jeux sérieux vers la mobilité et la réalité augmentée au service de l’apprentissage en science et technologie. Can J Learn Technol 37:2

    Google Scholar 

  • Harrap R, Daniel S (2009) Mobile LIDAR mapping: building the next generation of outdoor environment model for augmented reality. In: IEEE international symposium on mixed and augmented reality (ISMAR), Let’s go out workshop, Orlando, Florida, USA. Available at: https://www.icg.tugraz.at/~reitmayr/lgo/harrap_lidar.pdf

  • Hasse K, Koch R (2010) Extension of electronical nautical charts for 3D interactive visualization via CityGML. In: Proceedings of GeoInformatik 2010, Germany

    Google Scholar 

  • Hollerer T, Feiner S (2004) Mobile augmented reality (Chapter nine). In: Karimi H, Hammed A (eds) Telegeoinformatics: Location-Based Computing and Services. Taylor & Francis books ltd, London

    Google Scholar 

  • Kolbe TH, Gröger G, Plümer L (2008) CityGML—3D city models and their potential for emergency response. In: Geospatial information technology for emergency response. Taylor & Francis Group, London

    Google Scholar 

  • Kolbe TH, Gröger G, Plümer L (2005) CityGML—Interoperable access to 3D city models. In: Van Oosterom P, Zlatanova S, Fendel E M (eds) Proceedings of the international symposium on geo information for disaster management. Springer, pp 883–899

    Google Scholar 

  • Lee W, Park J (2005) Augmented foam: a tangible augmented reality for product design. In: Proceedings of 4th IEEE and ACM international symposium on mixed and augmented reality. Vienna, Austria, pp 106–109

    Google Scholar 

  • Liestol G (2009) Situated simulations: a prototyped augmented reality genre for learning on the iPhone. Int J Interact mobile Technol 3:24–28

    Google Scholar 

  • Milgram P, Takemura H, Utsumi A, Kishino F (1994) Augmented reality: a class of displays on the reality-virtuality continuum. In: Proceedings of telemanipulator and telepresence technologies, vol 2351. pp 282–292

    Google Scholar 

  • Oda O, S Feiner (2010) Rolling and shooting: two augmented reality games. In: Proceedings of the 28th international conference on human factors in computing systems. Atlanta, USA, pp 3041–3044

    Google Scholar 

  • OGC 08-007rl (2008) OpenGIS® city geography markup language (CityGML) encoding standard. Groger G, Kolbe TH, Czerwinski A, Nagel C (eds) Open Geospatial Consortium Inc

    Google Scholar 

  • Reitmayr G, Schmalstieg D (2003) Data management strategies for mobile augmented reality. In: Proceedings of international workshop on software technology for augmented reality systems (STARS). Tokyo, Japan, pp 47–52

    Google Scholar 

  • Schall G, Mendez E, Kruijff E, Veas E, Junghanns S, Reitinger B, Schmalstieg D (2009) Handeheld augmented reality for underground infrastructure visualization. Pers Ubiquit Comput 13:281–291

    Article  Google Scholar 

  • Schall G, Mendez E, Junghanns S, Schmalstieg D (2007a) Urban 3d models: what’s underneath? Handheld augmented reality for subsurface infrastructure visualization. In: Proceedings of Ubicomp 2007. Springer

    Google Scholar 

  • Schall G, Junghanns S, Mendes E, Schmalstieg D, Reitinger B (2007b) Handheld geospatial augmented reality using urban 3d models. In: Proceedings of the workshop on mobile spatial interaction, ACM international conference on human factors in computing systems, San Jose, USA

    Google Scholar 

  • Stadler A, Nagel C, König G, Kolbe TH (2009) Making interoperability persistent: a 3D geo database based on CityGML. In: Jiyeong L, Zlatanova S (eds) Lecture notes in geoinformation and cartography. Proceedings of the 3rd international workshop on 3D geo-information, Seoul, Korea, pp 175–192

    Google Scholar 

  • Thomas V, Daniel S, Pouliot J (2010) 3d modeling for mobile augmented reality in unprepared environment. In: Kolbe TH, Koing G, Nagel C (eds) Proceedings of 5th international 3D GeoInfo conference, Berlin, Germany

    Google Scholar 

  • Vanclooster A, Maeyer PD, Fack V (2009) Implementation of indoor navigation networks using CityGML. In: Proceedings of the 4th international workshop on 3D Geo-Information, Ghent, Belgium

    Google Scholar 

  • Wojciechowski R, Walczak K, White M, Cellary W (2004) Building virtual and augmented reality museum exhibitions. In: Proceedings of the 9th international conference on 3D web technology, Monterey, USA, pp 135–144

    Google Scholar 

  • Woodward C, Hakkarainen M, Rainio K (2010) Mobile augmented reality for building and construction: software architecture. In: Proceedings of mobile AR Summit at the 9th IEEE international symposium on mixed and augmented reality, Seoul, Korea

    Google Scholar 

  • Yang J, Maurer F (2010) Literature survey on combining digital tables and augmented reality for interacting with model of human body. Technical report. University of Calgary, Calgary, Canada

    Google Scholar 

  • Zamyadi A, Pouliot J, Bédard Y (2011) Improving the interoperability of 3D models among augmented reality systems: Proposal for a meta-model. In: Proceedings of the joint ISPRS workshop on 3D city modelling and applications and the 6th 3D GeoInfo Conference. In: The China academic journals electronic magazine. Wuhan, China

    Google Scholar 

  • Zlatanova S, Van Den Heuvel FA (2001) 3D city modeling for mobile augmented reality. In: Proceedings of CIPA 2001 symposium, Potsdam, Germany

    Google Scholar 

Download references

Acknowledgments

This study was done part of GeoEduc3D project, a research initiative funded by the Canadian Network of Excellence—GEOIDE (GEOmatics for Informed Decisions). Accordingly we wish to thank all scientific and industrial partners, the Geomatics Department and Centre de Recherche en Géomatique (CRG) at Laval University for their supports. We also thank Thomas Butzbach from the developers of the Energy War mobile game for helping us with procedure of back-ward-engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alborz Zamyadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zamyadi, A., Pouliot, J., Bédard, Y. (2013). A Three Step Procedure to Enrich Augmented Reality Games with CityGML 3D Semantic Modeling. In: Pouliot, J., Daniel, S., Hubert, F., Zamyadi, A. (eds) Progress and New Trends in 3D Geoinformation Sciences. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29793-9_15

Download citation

Publish with us

Policies and ethics