Skip to main content

Biosynthesis of Polymers

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Bacterial cellulose; Bacterial polyester

Definition

Some bacteria produce polymeric compounds such as polyesters and cellulose that can be used as useful biobased materials.

General Introduction

Bacteria can synthesize a wide range of biopolymers that serve diverse biological functions and have material properties applicable for numerous industrial and medical uses. These biopolymers can be efficiently converted from different renewable carbon. When bacterial polymers are required to compete with petroleum-based polymers, the cost of production is a crucial parameter. However, biopolymers derived from natural resources have a competitive advantage, owing to their sustainable production from renewable resources, their biodegradability, and, often, their biocompatibility. Here, the two representative natural polymers, polyhydroxyalkanoate and bacterial cellulose, are briefly introduced as valuable renewable products with respect to their biosynthesis and properties. A better...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nomura CT, Taguchi S (2007) PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Appl Microbiol Biotechnol 73:969–979

    CAS  Google Scholar 

  2. Taguchi S, Doi Y (2004) Evolution of polyhydroxyalkanoate (PHA) production system by “enzyme evolution”: Successful case studies of directed evolution. Macromol Biosci 4:145–156

    CAS  Google Scholar 

  3. Hisano T, Tsuge T, Fukui T, Iwata T, Miki K, Doi Y (2003) Crystal structure of the (R)-specific enoyl-CoA hydratase from Aeromonas caviae involved in polyhydroxyalkanoate biosynthesis. J Biol Chem 278:617–624

    CAS  Google Scholar 

  4. Tsuge T, Hisano T, Taguchi S, Doi Y (2003) Alteration of chain length substrate specificity of Aeromonas caviae R-enantiomer-specific enoyl-coenzyme A hydratase through site-directed mutagenesis. Appl Environ Microbiol 69:4830–4836

    CAS  Google Scholar 

  5. Matsumoto K, Aoki E, Takase K, Doi Y, Taguchi S (2006) In vivo and in vitro characterization of Ser477X mutations in polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. 61–3: effects of beneficial mutations on enzymatic activity, substrate specificity, and molecular weight of PHA. Biomacromolecules 7:2436–2442

    CAS  Google Scholar 

  6. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    Google Scholar 

  7. Tatsumi N, Inui M (2013) Corynebacterium glutamicum biology and biotechnology. Springer, Berlin/New York, p 73

    Google Scholar 

  8. Somleva MN, Peoples OP, Snell KD (2013) PHA bioplastics, biochemicals, and energy from crops. Plant Biotechnol J 11:233–252

    CAS  Google Scholar 

  9. Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    CAS  Google Scholar 

  10. Zhao YM, Wang ZY, Wang J, Mai HZ, Yan B, Yang F (2004) Direct synthesis of poly(D, L-lactic acid) by melt polycondensation and its application in drug delivery. J Appl Polym Sci 91:2143–2150

    CAS  Google Scholar 

  11. Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, Obata S (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci U S A 105:17323–17327

    CAS  Google Scholar 

  12. Matsumoto K, Taguchi S (2010) Enzymatic and whole-cell synthesis of lactate-containing polyesters: toward the complete biological production of polylactate. Appl Microbiol Biotechnol 85:921–932

    CAS  Google Scholar 

  13. Song YY, Matsumoto K, Yamada M, Gohda A, Brigham CJ, Sinskey AJ, Taguchi S (2012) Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Appl Microbiol Biotechnol 93:1917–1925

    CAS  Google Scholar 

  14. Taguchi S (2010) Current advances in microbial cell factories for lactate-based polyesters driven by lactate-polymerizing enzymes: towards the further creation of new LA-based polyesters. Polym Degrad Stab 95:1421–1428

    CAS  Google Scholar 

  15. Iwata T, Tsunoda K, Aoyagi Y, Kusaka S, Yonezawa N, Doi Y (2003) Mechanical properties of uniaxially cold-drawn films of poly([R]-3-hydroxybutyrate). Polym Degrad Stab 79:217–224

    CAS  Google Scholar 

  16. Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61–3. Biomacromolecules 1:17–22

    CAS  Google Scholar 

  17. Tanadchangsaeng N, Tsuge T, Abe H (2010) Comonomer compositional distribution, physical properties, and enzymatic degradability of bacterial poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) copolyesters. Biomacromolecules 11:1615–1622

    CAS  Google Scholar 

  18. Sato S, Ishii N, Hamada Y, Abe H, Tsuge T (2012) Utilization of 2-alkenoic acids for biosynthesis of medium-chain-length polyhydroxyalkanoates in metabolically engineered Escherichia coli to construct a novel chemical recycling system. Polym Degrad Stab 97:329–336

    CAS  Google Scholar 

  19. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Google Scholar 

  20. Yamada M, Matsumoto K, Uramoto S, Motohashi R, Abe H, Taguchi S (2011) Lactate fraction dependent mechanical properties of semitransparent poly(lactate-co-3-hydroxybutyrate)s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. J Biotechnol 154:255–260

    CAS  Google Scholar 

  21. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    Google Scholar 

  22. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849

    CAS  Google Scholar 

  23. Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose - the natural power to heal wounds. Biomaterials 27:145–151

    CAS  Google Scholar 

  24. Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Google Scholar 

  25. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    CAS  Google Scholar 

  26. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    CAS  Google Scholar 

  27. Cheng KC, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12:730–736

    CAS  Google Scholar 

  28. Cheng KC, Catchmark JM, Demirci A (2009) Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16:1033–1045

    CAS  Google Scholar 

  29. da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Google Scholar 

  30. Kose R, Sunagawa N, Yoshida M, Tajima K (2013) One-step production of nanofibrillated bacterial cellulose (NFBC) from waste glycerol using Gluconacetobacter intermedius NEDO-01. Cellulose 20:2971–2979

    CAS  Google Scholar 

  31. Brown RM (1996) The biosynthesis of cellulose. J Macromol Sci Pure A33:1345–1373

    CAS  Google Scholar 

  32. Toba K, Yamamoto H, Yoshida M (2013) Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique. Cellulose 20:633–643

    CAS  Google Scholar 

  33. Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose–III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5:201–213

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken’ichiro Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Matsumoto, K., Tajima, K., Taguchi, S. (2015). Biosynthesis of Polymers. In: Kobayashi, S., MĂĽllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_393

Download citation

Publish with us

Policies and ethics