Skip to main content

Hyperbranched and Dendritic Polyolefins

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials
  • 135 Accesses

Synonyms

Branched polyethylene; Branched polyolefins; Dendritic polyethylene; Dendritic polyolefins; Hyperbranched polyethylene; Hyperbranched polyolefins

Definition

Dendrimers are repetitively branched macromolecules having perfect fractal structure. Hyperbranched polymers, on the other hand, are imperfect architectural relatives of dendrimers. Due to synthetic challenge in forming unsymmetrical carbon–carbon bonds, purely aliphatic hydrocarbon dendrimers have not been reported in literature. Hyperbranched polyolefins refer to olefin polymers having hyperbranched architecture that are formed by addition polymerization of olefinic monomers [1]. Dendritic polyolefins specifically refer to hyperbranched polyolefins that have more globular structure closely resembling dendrimers.

Historical Background

Polyolefins are an important category of synthetic materials with millions of tons produced annually for broad applications including fibers, plastics, and elastomers. One critical molecular...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guan ZB (2011) Hyperbranched and dendritic polyolefins prepared by transition metal catalyzed polymerization. In: Yan DY, Gao C, Frey H (eds) Hyperbranched polymers. Wiley, New Jersey. doi:10.1002/9780470929001.ch9

    Google Scholar 

  2. Odian G (2004) Principles of polymerization, 4th edn. Wiley, New Jersey

    Google Scholar 

  3. Boardman BM, Bazan GC (2009) Alpha-iminocarboxamidato nickel complexes. Acc Chem Res 42:1597–1606. doi:10.1021/ar900097b

    CAS  Google Scholar 

  4. Mori H, Muller AHE, Simon PFW (2011) Self-condensing vinyl polymerization. In: Yan DY, Gao C, Frey H (eds) Hyperbranched polymers. Wiley, New Jersey. doi:10.1002/9780470929001.ch5

    Google Scholar 

  5. Keim W, Appel R, Storeck A, Krueger C, Goddard R (1981) New nickel and palladium complexes with aminobis(imino)phosphorane ligands in the polymerization of ethylene. Angew Chem Int Ed 93:91–92. doi:10.1002/anie.198101161

    CAS  Google Scholar 

  6. Johnson LK, Killian CM, Brookhart M (1995) New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and alpha-olefins. J Am Chem Soc 117:6414–6415. doi:10.1021/ja00128a054

    CAS  Google Scholar 

  7. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100:1169–1203. doi:10.1021/cr9804644

    CAS  Google Scholar 

  8. Johnson LK, Mecking S, Brookhart M (1996) Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J Am Chem Soc 118:267–268. doi:10.1021/ja953247i

    CAS  Google Scholar 

  9. Moehring VM, Fink G (1985) New type of alpha-olefin polymerization with a nickel-aminobis(imino)phosphorane catalyst system. Angew Chem Int Ed 97:982–984

    CAS  Google Scholar 

  10. Guan ZB, Cotts PM, McCord EF, McLain SJ (1999) Chain walking: a new strategy to control polymer topology. Science 283:2059–2062. doi:10.1126/science.283.5410.2059

    CAS  Google Scholar 

  11. Guan ZB (2010) Recent progress of catalytic polymerization for controlling polymer topology. Chem Asian J 5:1058–1070. doi:10.1002/asia.200900749

    CAS  Google Scholar 

  12. Tempel DJ, Johnson LK, Huff RL, White PS, Brookhart M (2000) Mechanistic studies of Pd(II)-alpha-diimine-catalyzed olefin polymerizations. J Am Chem Soc 122:6686–6700. doi:10.1021/ja021071w

    CAS  Google Scholar 

  13. Cotts PM, Guan ZB, McCord E, McLain S (2000) Novel branching topology in polyethylenes as revealed by light scattering and 13C NMR. Macromolecules 33:6945–6952. doi:10.1021/ma000926r

    CAS  Google Scholar 

  14. Patil R, Colby RH, Read DJ, Chen GH, Guan ZB (2005) Rheology of polyethylenes with novel branching topology synthesized by a chain-walking catalyst. Macromolecules 38:10571–10579. doi:10.1021/ma051408p

    CAS  Google Scholar 

  15. Guan ZB, Cotts PM (2001) Tuning polymer topology by late transition metal catalysts: from linear to hyperbranched to “dendritic”. Polym Mater Sci Eng 84:382–383

    CAS  Google Scholar 

  16. Burchard W (1999) Solution properties of branched macromolecules. Adv Polym Sci 143:113–194

    CAS  Google Scholar 

  17. Chen GH, Ma XS, Guan ZB (2003) Synthesis of functional olefin copolymers with controllable topologies using a chain-walking catalyst. J Am Chem Soc 125:6697–6704. doi:10.1021/ja028921s

    CAS  Google Scholar 

  18. Mackay ME et al (2006) General strategies for nanoparticle dispersion. Science 311:1740–1743. doi:10.1126/science.1122225

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Guan, Z. (2015). Hyperbranched and Dendritic Polyolefins. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_34

Download citation

Publish with us

Policies and ethics