Skip to main content

Graphene Oxide

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Graphite oxide; Graphitic acid; Oxo-functionalized graphene

Definitions

Graphene oxide is a material that consists of exactly one layer of functionalized graphite (graphene). Oxygen functional groups of various species and amounts are located on both sides of the basal plane.

Introduction

Carbon, element number six, provides four valence electrons to form up to four chemical bonds. The carbon atom can be hybridized in three states: sp, sp2, or sp3. Therefore, carbon is highly versatile and exists in different allotropes such as diamonds (purely sp3-hybridized), graphite (purely sp2-hybridized), as well as spheres, like fullerenes which are sp2-hybridized. Carbon atoms are also sp2-hybridized in single- or multiwall carbon nanotubes. Mixed forms of carbon comprising sp3- and sp-hybridized carbon or sp2- and sp-hybridized carbon are known as well [1].

Graphite is a long-known carbon allotrope from which graphene oxide (GO) is derived [2]. GO is a single layer of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9:868–871. doi:10.1038/nmat2885

    CAS  Google Scholar 

  2. Eigler S (2011) Transparent and electrically conductive films from chemically derived graphene. In: Mikhailov S (ed) Physics and applications of graphene – experiments. InTech, New York

    Google Scholar 

  3. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200. doi:10.1038/nature11458

    CAS  Google Scholar 

  4. Eigler S, Enzelberger-Heim M, Grimm S, Hofmann P, Kroener W, Geworski A, Dotzer C, Rockert M, Xiao J, Papp C, Lytken O, Steinruck HP, Muller P, Hirsch A (2013) Wet chemical synthesis of graphene. Adv Mater 25:3583–3587. doi:10.1002/adma.201300155

    CAS  Google Scholar 

  5. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. doi:10.1039/b917103g

    CAS  Google Scholar 

  6. Eigler S, Hirsch A (2014) Chemistry with graphene and graphene oxide – challenges for synthetic chemists. Angew Chem Int Ed. doi:10.1002/anie.201402780

    Google Scholar 

  7. Chang H, Wu H (2013) Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv Funct Mater 23:1984–1997. doi:10.1002/adfm.201202460

    CAS  Google Scholar 

  8. Dai L (2013) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46:31–42. doi:10.1021/ar300122m

    CAS  Google Scholar 

  9. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053. doi:10.1021/cr300115g

    CAS  Google Scholar 

  10. Sun X, Sun H, Li H, Peng H (2013) Developing polymer composite materials: carbon nanotubes or graphene? Adv Mater 25:5153–5176. doi:10.1002/adma.201301926

    CAS  Google Scholar 

  11. Lü K, Zhao G, Wang X (2012) A brief review of graphene-based material synthesis and its application in environmental pollution management. Chin Sci Bull 57:1223–1234. doi:10.1007/s11434-012-4986-5

    Google Scholar 

  12. Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224. doi:10.1021/ar300159f

    CAS  Google Scholar 

  13. Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25:168–186. doi:10.1002/adma.201203229

    CAS  Google Scholar 

  14. Enoki T, Suzuki M, Endo M (2003) Graphite intercalation compounds and applications. Oxford University Press, Oxford

    Google Scholar 

  15. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214. doi:10.1021/cr3000412

    CAS  Google Scholar 

  16. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312. doi:10.1039/c3cs60303b

    CAS  Google Scholar 

  17. Cheng C, Li D (2013) Solvated graphenes: an emerging class of functional soft materials. Adv Mater 25:13–30. doi:10.1002/adma.201203567

    CAS  Google Scholar 

  18. Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191–3195. doi:10.1002/adma.200803808

    CAS  Google Scholar 

  19. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. doi:10.1038/nature07719

    CAS  Google Scholar 

  20. Wang J, Liang M, Fang Y, Qiu T, Zhang J, Zhi L (2012) Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv Mater 24:2874–2878. doi:10.1002/adma.201200055

    CAS  Google Scholar 

  21. Cote LJ, Kim J, Tung VC, Luo J, Kim F, Huang J (2011) Graphene oxide as surfactant sheets. Pure Appl Chem 83:95–110. doi:10.1351/pac-con-10-10-25

    CAS  Google Scholar 

  22. Liu J, Durstock M, Dai L (2014) Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ Sci. doi:10.1039/c1033ee42963f

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Eigler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Eigler, S. (2015). Graphene Oxide. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_333

Download citation

Publish with us

Policies and ethics