Skip to main content

DNA-DNA Origami

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

DNA nanostructure

Definition

DNA origami is a two- or three-dimensional nanostructure of custom shape utilizing hundreds of short “staple” single DNA strands to sew a long “scaffold” single DNA strand.

Introduction to DNA Origami

DNA, a genetic information carrier in nature, has been used as natural materials to build complex two- to three- dimensional structures at the nanometer scale. Watson-Crick base pairing rule between DNA bases where adenine (A) and guanine (G) form hydrogen bonds with thymine (T) and cytosine (C), respectively, allows to program diverse structural DNA motifs. The original idea was proposed by Seeman in 1982 [1] and was further evolved to DNA origami concept by Rothemund in 2006 [2], and now the relevant technology was termed as DNA nanotechnology. The DNA origami utilizes hundreds of short “staple” single strands with length of typically 20–50 nucleotides to sew a long “scaffold” single strand folding into two-dimensional structures of custom shape as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99(2):237–247

    CAS  Google Scholar 

  2. Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    CAS  Google Scholar 

  3. Andersen ES et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76

    CAS  Google Scholar 

  4. Ke Y et al (2009) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131(43):15903–15908

    CAS  Google Scholar 

  5. Douglas SM et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414–418

    CAS  Google Scholar 

  6. Han D et al (2013) Unidirectional scaffold-strand arrangement in DNA origami. Angew Chem Int Ed 52:9031–9034

    CAS  Google Scholar 

  7. Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32(13):3211–3220

    CAS  Google Scholar 

  8. Castro CE et al (2011) A primer to scaffolded DNA origami. Nat Methods 8(3):221–229

    CAS  Google Scholar 

  9. Shih WM, Lin C (2010) Knitting complex weaves with DNA origami. Curr Opin Struct Biol 20(3):276–282

    CAS  Google Scholar 

  10. Zhou L et al (2013) DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano 8(1):17–34

    Google Scholar 

  11. Protozanova E et al (2004) Stacked-unstacked equilibrium at the nick site of DNA. J Mol Biol 342(3):775–785

    CAS  Google Scholar 

  12. Kim DN et al (2012) Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res 40(7):2862–2868

    CAS  Google Scholar 

  13. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325(5941):725–730

    CAS  Google Scholar 

  14. Ke Y et al (2012) Multilayer DNA origami packed on hexagonal and hybrid lattices. J Am Chem Soc 134(3):1770–1774

    CAS  Google Scholar 

  15. Han D et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346

    CAS  Google Scholar 

  16. Han D et al (2013) DNA gridiron nanostructures based on four-arm junctions. Science 339(6126):1412–1415

    CAS  Google Scholar 

  17. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271(5250):795–799

    CAS  Google Scholar 

  18. Liedl T et al (2010) Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat Nanotechnol 5(7):520–524

    CAS  Google Scholar 

  19. Hays JB, Zimm BH (1970) Flexibility and stiffness in nicked DNA. J Mol Biol 48(2):297–317

    CAS  Google Scholar 

  20. Duckett DR, Murchie A, Lilley D (1990) The role of metal ions in the conformation of the four-way DNA junction. EMBO J 9(2):583

    CAS  Google Scholar 

  21. Martin TG, Dietz H (2012) Magnesium-free self-assembly of multi-layer DNA objects. Nat Commun 3(1103):1–6

    Google Scholar 

  22. Song J et al (2013) Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami. Small 9(17):2954–2959

    CAS  Google Scholar 

  23. Sobczak JPJ et al (2012) Rapid folding of DNA into nanoscale shapes at constant temperature. Science 338(6113):1458–1461

    CAS  Google Scholar 

  24. Jungmann R et al (2008) Isothermal assembly of DNA origami structures using denaturing agents. J Am Chem Soc 130(31):10062–10063

    CAS  Google Scholar 

  25. Ko S (2013) RNA–DNA hybrid origami: folding of a long RNA single strand into complex nanostructures using short DNA helper strands. Chem Commun 49(48):5462–5464

    Google Scholar 

  26. Bai XC et al (2012) Cryo-EM structure of a 3D DNA-origami object. Proc Natl Acad Sci 109(49):20012–20017

    CAS  Google Scholar 

  27. Song J et al (2012) Direct visualization of transient thermal response of a DNA origami. J Am Chem Soc 134(24):9844–9847

    CAS  Google Scholar 

  28. Wei X et al (2013) Mapping the thermal behavior of DNA origami nanostructures. J Am Chem Soc 135(16):6165–6176

    CAS  Google Scholar 

  29. Kauert DJ et al (2011) Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett 11(12):5558–5563

    CAS  Google Scholar 

  30. Yoo J, Aksimentiev A (2013) In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc Natl Acad Sci 110(50):20099–20104

    CAS  Google Scholar 

  31. Rothemund PW et al (2004) Design and characterization of programmable DNA nanotubes. J Am Chem Soc 126(50):16344–16352

    CAS  Google Scholar 

  32. O’Neill P et al (2006) Sturdier DNA nanotubes via ligation. Nano Lett 6(7):1379–1383

    Google Scholar 

  33. Gore J et al (2006) DNA overwinds when stretched. Nature 442(7104):836–839

    CAS  Google Scholar 

  34. Bryant Z et al (2003) Structural transitions and elasticity from torque measurements on DNA. Nature 424(6946):338–341

    CAS  Google Scholar 

  35. Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421(6921):423–427

    Google Scholar 

  36. Kim DN, Nguyen CT, Bathe M (2011) Conformational dynamics of supramolecular protein assemblies. J Struct Biol 173(2):261–270

    CAS  Google Scholar 

  37. Kim DN et al (2011) Conformational dynamics data bank: a database for conformational dynamics of proteins and supramolecular protein assemblies. Nucleic Acids Res 39(Suppl 1):451–455

    Google Scholar 

  38. McQuarrie DA (1976) Statistical Mechanics. Harper & Row, New York

    Google Scholar 

  39. Arbona JM, Aimé JP, Elezgaray J (2012) Folding of small origamis. J Chem Phys 136(6):065102

    Google Scholar 

  40. Arbona JM, Elezgaray J, Aimé JP (2012) Modelling the folding of DNA origami. EPL (Europhys Lett) 100(2):28006

    Google Scholar 

  41. Arbona JM, Aimé JP, Elezgaray J (2013) Cooperativity in the annealing of DNA origamis. J Chem Phys 138(1):015105

    Google Scholar 

  42. Fujibayashi K, Murata S (2009) Precise simulation model for DNA tile self-assembly. IEEE Trans Nanotechnol 8(3):361–368

    Google Scholar 

  43. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491

    CAS  Google Scholar 

  44. Wang T et al (2012) Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles. J Am Chem Soc 134(3):1606–1616

    CAS  Google Scholar 

  45. Schiffels D, Liedl T, Fygenson DK (2013) Nanoscale structure and microscale stiffness of DNA nanotubes. ACS Nano 7(8):6700–6710

    CAS  Google Scholar 

  46. Zhao YX et al (2012) DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6(10):8684–8691

    CAS  Google Scholar 

  47. Endo M, Yang Y, Sugiyama H (2013) DNA origami technology for biomaterials applications. Biomater Sci 1(4):347–360

    CAS  Google Scholar 

  48. Kuzyk A et al (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483(7389):311–314

    CAS  Google Scholar 

  49. Nickels PC, Feldmann J, Liedl T (2014) Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat Nanotechnol 9:74–78

    Google Scholar 

  50. Mangalum A, Rahman M, Norton ML (2013) Site-specific immobilization of single-walled carbon nanotubes onto single and one-dimensional DNA origami. J Am Chem Soc 135(7):2451–2454

    CAS  Google Scholar 

  51. Woo S, Rothemund PW (2011) Programmable molecular recognition based on the geometry of DNA nanostructures. Nat Chem 3(8):620–627

    CAS  Google Scholar 

  52. Zhao Z, Yan H, Liu Y (2010) A route to scale up DNA origami using DNA tiles as folding staples. Angew Chem 122(8):1456–1459

    Google Scholar 

  53. Kershner RJ et al (2009) Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat Nanotechnol 4:557–561

    CAS  Google Scholar 

  54. Rajendran A et al (2010) Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces. ACS Nano 5(1):665–671

    Google Scholar 

  55. Endo M et al (2011) Two-dimensional DNA origami assemblies using a four-way connector. Chem Commun 47(11):3213–3215

    CAS  Google Scholar 

  56. Högberg BR, Liedl T, Shih WM (2009) Folding DNA origami from a double-stranded source of scaffold. J Am Chem Soc 131(26):9154–9155

    Google Scholar 

  57. Tabata O (2010) A closer look at DNA nanotechnology. Nanotechnol Mag IEEE 4(4):13–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ma, Z., Kim, YJ., Kim, DN., Tabata, O. (2015). DNA-DNA Origami. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_321

Download citation

Publish with us

Policies and ethics