Skip to main content

Elastomer Blends: The Role of Nanoparticles on Properties

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Polymer/elastomer blends; Polymer/elastomer blend nanocomposites

Definition

The dispersion of nanoparticles and their compatibilizing action in binary elastomer blends have been discussed.

Introduction

The nano era has made an enormous increase in research and development activities in the area of nanostructured materials. The use of nanofillers in different fields has made this an inevitable material when scientists look forward to develop exceptional products for the various applications. The use of nanofillers in polymer system is one of the widely influenced fields in nanoscience and technology because of the various applications in industrial areas. In polymer systems, nanofillers have found their place not only as reinforcing agent but also in enhancing other properties like barrier properties, thermal properties, conductivity, etc. For the past few years, nanofillers have also found their position as compatibilizers in polymer blend systems. The use of nanofillers as a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoo M, Kim S, Bang J (2013) Design and fabrication of thermally stable nanoparticles for well-defined nanocomposites. J Polym Sci B Polym Phys 51(7):494–507

    CAS  Google Scholar 

  2. Zou ZM, Sun ZY, An LJ (2014) Effect of fumed silica nanoparticles on the morphology and rheology of immiscible polymer blends. Rheol Acta 53(1):43–53

    CAS  Google Scholar 

  3. Labaume I, Huitric J, Médéric P, Aubry T (2013) Structural and rheological properties of different polyamide/polyethylene blends filled with clay nanoparticles: a comparative study. Polymer 54(14):3671–3679

    CAS  Google Scholar 

  4. Elias L, Fenouillot F, Majesté JC, Cassagnau P (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48(20):6029–6040

    CAS  Google Scholar 

  5. Zeng QH, Yu AB, Lu GQ, Paul DR (2005) Clay-based polymer nanocomposites: research and commercial development. J Nanosci Nanotechnol 5(10):1574–1592

    CAS  Google Scholar 

  6. Fenouillot F, Cassagnau P, Majeste JC (2009) Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50(6):1333–1350

    CAS  Google Scholar 

  7. Essawy H, El-Nashar D (2004) The use of montmorillonite as a reinforcing and compatibilizing filler for NBR/SBR rubber blend. Polym Test 23(7):803–807

    CAS  Google Scholar 

  8. Arroyo M, Lopez-Manchado MA, Valentin JL, Carretero J (2007) Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends. Compos Sci Technol 67(7):1330–1339

    CAS  Google Scholar 

  9. Das A, Mahaling RN, Stöckelhuber KW, Heinrich G (2011) Reinforcement and migration of nanoclay in polychloroprene/ethylene–propylene–diene-monomer rubber blends. Compos Sci Technol 71(3):276–281

    CAS  Google Scholar 

  10. Ali Z, Le HH, Ilisch S, Thurn-Albrecht T, Radusch HJ (2010) Morphology development and compatibilization effect in nanoclay filled rubber blends. Polymer 51(20):4580–4588

    CAS  Google Scholar 

  11. White JL, Kim KJ (2008) Thermoplastic and rubber compounds: technology and physical chemistry. Hanser, Munich

    Google Scholar 

  12. Dang TTN, Kim JK, Lee SH, Kim KJ (2011) Vinyl functional group effects on mechanical and thermal properties of silica-filled silicone rubber/natural rubber blends. Compos Interf 18(2):151–168

    CAS  Google Scholar 

  13. Pal K, Rajasekar R, Kang DJ, Zhang ZX, Pal SK, Das CK, Kim JK (2010) Effect of fillers on natural rubber/high styrene rubber blends with nano silica: morphology and wear. Mater Des 31(2):677–686

    CAS  Google Scholar 

  14. Kapgate BP, Das C, Das A, Basu D, Reuter U, Heinrich G (2012) Effect of sol–gel derived in situ silica on the morphology and mechanical behavior of natural rubber and acrylonitrile butadiene rubber blends. J Sol-Gel Sci Technol 63(3):501–509

    CAS  Google Scholar 

  15. Saeed F, Ansarifar A, Ellis RJ, Haile-Meskel Y, Irfan MS (2012) Two advanced styrene-butadiene/polybutadiene rubber blends filled with a silanized silica nanofiller for potential use in passenger car tire tread compound. J Appl Polym Sci 123(3):1518–1529

    CAS  Google Scholar 

  16. Kim IJ, Kim WS, Lee DH, Kim W, Bae JW (2010) Effect of nano zinc oxide on the cure characteristics and mechanical properties of the silica-filled natural rubber/butadiene rubber compounds. J Appl Polym Sci 117(3):1535–1543

    CAS  Google Scholar 

  17. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    CAS  Google Scholar 

  18. Kueseng P, Sae-oui P, Rattanasom N (2013) Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube: effect of preparation methods. Polym Test 32(4):731–738

    CAS  Google Scholar 

  19. Dubey KA, Bhardwaj YK, Rajkumar K, Panicker L, Chaudhari CV, Chakraborty SK, Sabharwal S (2012) Polychloroprene rubber/ethylene-propylene diene monomer/multiple walled carbon nanotube nanocomposites: synergistic effects of radiation crosslinking and MWNT addition. J Polym Res 19(5):1–9

    CAS  Google Scholar 

  20. Das A, Stöckelhuber KW, Jurk R, Saphiannikova M, Fritzsche J, Lorenz H, Heinrich G (2008) Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene–butadiene and butadiene rubber blends. Polymer 49(24):5276–5283

    CAS  Google Scholar 

  21. Kueseng P, Sae-oui P, Sirisinha C, Jacob KI, Rattanasom N (2013) Anisotropic studies of multi-wall carbon nanotube (MWCNT)-filled natural rubber (NR) and nitrile rubber (NBR) blends. Polym Test 32(7):1229–1236

    CAS  Google Scholar 

  22. Ajalesh Balachandran N, Philip K, Rani J (2013) Effect of expanded graphite on thermal, mechanical and dielectric properties of ethylene–propylene–diene terpolymer/hexa fluoropropylene–vinylidinefluoride dipolymer rubber blends. Eur Polym J 49(1):247–260

    CAS  Google Scholar 

  23. Malas A, Pal P, Das CK (2014) Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater Des 55:664–673

    CAS  Google Scholar 

  24. Zhang Y, Ge S, Tang B, Koga T, Rafailovich MH, Sokolov JC, Nguyen D (2001) Effect of carbon black and silica fillers in elastomer blends. Macromolecules 34(20):7056–7065

    CAS  Google Scholar 

  25. Sircar AK, Lamond TG (1973) Carbon black transfer in blends of cis-poly (butadiene) with other elastomers. Rubber Chem Technol 46(1):178–191

    CAS  Google Scholar 

  26. Clarke J, Clarke B, Freakley PK, Sutherland I (2001) Compatibilising effect of carbon black on morphology of NR–NBR blends. Plastics Rubber Compos 30(1):39–44

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Abraham, J., Somasekharan, L., Sharika, T., Pillai, L.R., Maria, H.J., Thomas, S. (2015). Elastomer Blends: The Role of Nanoparticles on Properties. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_290

Download citation

Publish with us

Policies and ethics