Skip to main content

Dendrimers and Hyperbranched Polymers in Medicine

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Arborols; Cascade molecules; Dendritic polymers; Dendron

Definition

Dendrimers are synthetically manufactured, three-dimensional macromolecules built up from a monomer, with new branches added in steps until a treelike structure is created. Dendrimers are technically polymers and are being investigated for possible uses in nanotechnology and other fields.

Introduction and Historical Background

The application of nanotechnology in medicine and pharmaceuticals is a rapidly advancing field that is swiftly gaining recognition as an autonomous area of research called “nanomedicine.” Critical needs in this field, however, are biocompatible and bioactive materials for in vivo and in vitro diagnostics as well as therapy including targeted delivery and regenerative medicine. Therefore, extensive attention has been given to the design and development of new macromolecular systems. Among the various polymeric architectures, dendritic (“treelike”) polymers have experienced an exponential...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buhleier E, Wehner W, Vögtle F (1978) “Cascade”- and “Nonskid-Chain-like” syntheses of molecular cavity topologies. Synthesis 2:155–158

    Google Scholar 

  2. Tomalia DA et al (1985) A new class of polymers: starburst-dendritic macromolecules. Poly Jr 17:117–132

    CAS  Google Scholar 

  3. Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and dendrons: concepts, syntheses, applications. Wiley-VCH, Weinheim

    Google Scholar 

  4. Hawker CJ, Fréchet JMJ (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647

    CAS  Google Scholar 

  5. For detailed information: Scifinder (2012)

    Google Scholar 

  6. Cheng Y, Tomalia DA (2012) Dendrimer-based drug delivery systems: from theory to practice. Wiley-VCH, Hoboken

    Google Scholar 

  7. Matsumura Y, Maeda HA (1986) New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  8. Neerman MF et al (2004) Reduction of drug toxicity using dendrimers based on melamine. Mol Pharm 1:390–393

    CAS  Google Scholar 

  9. Agarwal A et al (2009) Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials 30:3588–3596

    CAS  Google Scholar 

  10. Calderon M et al (2010) Dendritic polyglycerols for biomedical applications. Adv Mater 22:190–218

    CAS  Google Scholar 

  11. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884

    CAS  Google Scholar 

  12. Lee CC et al (2006) A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci 103:16649–16654

    CAS  Google Scholar 

  13. Calderón M et al (2011) Development of efficient acid cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell. J Control Rel 151:295–301

    Google Scholar 

  14. Matyjaszewski K et al (2007) Macromolecular engineering: from precise macromolecular synthesis to macroscopic material properties and application. Wiley-VCH, Weinheim

    Google Scholar 

  15. Khandare J et al (2012) Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev 41:2824–2848

    CAS  Google Scholar 

  16. Wang JY, Casero RA Jr (2006) Polyamine cell signaling physiology, pharmacology, and cancer research. Humana Press, Totowa

    Google Scholar 

  17. Haensler J, Szoka FC Jr (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4:372–379

    CAS  Google Scholar 

  18. Gebhart CL, Kabanov AV (2001) Evaluation of polyplexes as gene transfer agents. J Control Rel 73:401–416

    CAS  Google Scholar 

  19. Fischer W et al (2010) Dendritic polyglycerols with oligoamine shells show low toxicity and high transfection efficiency in vitro. Bioconjug Chem 21:1744–1752

    CAS  Google Scholar 

  20. Ofek P et al (2010) In vivo delivery of siRNA to tumors and their vasculature by novel dendritic nanocarriers. FASEB J 24:3122–3134

    CAS  Google Scholar 

  21. Wang B et al (2009) Anti-inflammatory and anti-oxidant activity of anionic dendrimer-N-acetyl cysteine conjugates in activated microglial cells. Int J Pharm 377:159–168

    CAS  Google Scholar 

  22. Papp J et al (2008) Modular synthesis of multivalent glycoarchitectures and their unique selectin binding behavior. Chem Commun 44:5851–5853

    Google Scholar 

  23. Dernedde J et al (2010) Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc Natl Acad Sci U S A 107:19679–19684

    CAS  Google Scholar 

  24. Kensinger RD et al (2004) Synthesis of novel, multivalent glycodendrimers as ligands for HIV-1gp120. Bioconjug Chem 15:349–358

    CAS  Google Scholar 

  25. For detailed information. http://www.starpharma.com

  26. Papp I et al (2011) Inhibition of influenza virus activity by multivalent glycoarchitectures with matched sizes. ChemBioChem 12:887–895

    CAS  Google Scholar 

  27. Nishiyama N et al (2009) Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine. J Control Rel 133:245–251

    CAS  Google Scholar 

  28. Kobayashi H et al (2004) Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res 10:7712–7720

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Haag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Malhotra, S., Haag, R. (2015). Dendrimers and Hyperbranched Polymers in Medicine. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_17

Download citation

Publish with us

Policies and ethics