Skip to main content

Efflux: How Bacteria Use Pumps to Control Their Microenvironment

  • Chapter
  • First Online:
Antibiotic Resistance

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 211))

Abstract

Efflux pumps are a potent and clinically important cause of antibiotic resistance. The particular focus of this chapter is on the efflux pump as a target for antimicrobial therapy and the development of new antibacterials to address the efflux problem.

Tigecycline is an example of how old antibiotics, in this case tetracyclines, which have become substrates for efflux pumps, can be extensively modified to restore antimicrobial activity and clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschlimann JR (2003) The role of multidrug resistance pumps in the antibiotic resistance or Pseudomonas aeruginosa and other gram-negative bacteria. Pharmacotherapy 23:916–924

    Article  PubMed  CAS  Google Scholar 

  • Agersø Y, Guardabassi L (2005) Identification of Tet39, a novel class of tetracycline resistance determinant in Acinetobacter spp. of environmental and clinical origin. J Antimicrob Chemother 55:566–569

    Article  PubMed  Google Scholar 

  • Ambrose KD, Nisbet R, Stephens DS (2005) Macrolide efflux in Streptococcus pneumonia is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrob Agents Chemother 49:4203–4209

    Article  PubMed  CAS  Google Scholar 

  • Andes D, Lepak A, Nett J, Lincoln L, Marchillo K (2006) In vivo fluconazole pharmacodynamics and resistance development in a previously susceptible Candida albicans population examined by microbiologic and transcriptional profiling. Antimicrob Agents Chemother 50:2384–2394

    Article  PubMed  CAS  Google Scholar 

  • Andrésen C, Jalal S, Aili D, Wang Y, Islam S, Jarl A, Liedberg B, Wretlind B, Martensson LG, Sunnerhagen M (2010) Critical biophysical properties in the Pseudomonas aeruginosa efflux gene regulator MexR are targeted by mutations conferring multidrug resistance. Protein Sci 19:680–692

    Article  PubMed  Google Scholar 

  • Ball PR, Shales SW, Chopra I (1980) Plasmid-mediated tetracycline resistance in Escherichia coli. Biochem Biophys Commun 93:74–81

    Article  CAS  Google Scholar 

  • Betriu C, Rodríguez-Avial I, Sánchez BA, Gómez M, Álvarez J, Picazo J, and the Spanish Group of tigecycline (2002) In vitro activities of tigecycline (GAR-936) against recently isolated clinical bacteria in Spain. Antimicrob Agents Chemother 46:892–895

    Article  PubMed  CAS  Google Scholar 

  • Bogdanovich T, Bozdogan B, Appelbaum PC (2006) Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Antimicrob Agents Chemother 50:893–898

    Article  PubMed  CAS  Google Scholar 

  • Bohnert JA, Schuster S, Fähnrich E, Trittler R, Kern WV (2007) Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 59:1216–1222

    Article  PubMed  CAS  Google Scholar 

  • Bonomo RA, Szabo D (2006) Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 43:S49–S56

    Article  PubMed  CAS  Google Scholar 

  • Bryskier A (2005) Microbial efflux of antibiotics and inhibitors of efflux pumps. In: Bryskier A (ed) Antimicrobial agents. ASM, Washington, DC

    Google Scholar 

  • Dean CR, Visalli MA, Projan SJ, Sum PI, Bradford PA (2003) Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47:972–978

    Article  PubMed  CAS  Google Scholar 

  • De Rossi E, Aínsa JA, Riccardi G (2006) Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30:36–52

    Article  PubMed  Google Scholar 

  • dos Santos KV, Diniz CG, Veloso Lde C, de Andrade HM, Giusta Mda S, Pires Sda F, Santos AV, Apolonio AC, de Carvalho MA, Farias Lde M (2010) Proteomic analysis of Escherichia coli with experimentally induced resistance to piperacillin/tazobactam. Res Microbiol 161:268–275

    Article  PubMed  Google Scholar 

  • Dunham SA, McPherson CJ, Miller AA (2010) The relative contribution of efflux and target gene mutations to fluoroquinolone resistance in recent clinical isolates of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 29:279–288

    Article  PubMed  CAS  Google Scholar 

  • Fachin AL, Ferreira-Nozawa MS, Maccheroni W Jr, Martinez-Rossi NM (2006) Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinolone N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol 55(Pt 8):1093–1099

    Article  PubMed  CAS  Google Scholar 

  • Gales AC, Jones RN (2000) Antimicrobial activity and spectrum of the new glycylcycline GAR-936 tested against 1,203 recent clinical bacterial isolates. Diagn Microbiol Infect Dis 36:19–36

    Article  PubMed  CAS  Google Scholar 

  • Gales AC, Jones RN, Turnidge J, Rennie R, Ramphal R (2001) Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY antimicrobial surveillance program, 1997–1999. Clin Infect Dis 32:S146–55

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Wikler MA, Sahm DF, Blosser-Middleton RS, Karlowsky JA (2004) In vitro antimicrobial activity of doripenem: a new carbapenem. Antimicrob Agents Chemother 48:1384–1396

    Article  PubMed  CAS  Google Scholar 

  • Guardabassi L, Dijkshoom L, Collard JM et al (2000) Distribution and in vitro transfer of tetracycline resistance determinants in clinical and aquatic Acinetobacter strains. J Med Microbiol 49:929–936

    PubMed  CAS  Google Scholar 

  • Guglierame P, Pasca ME, De Rossi E, Buroni S, Arrigo P, Manina G, Riccardi G (2006) Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol 6:66

    Article  PubMed  Google Scholar 

  • Gupta AK, Katoch VM, Chauhan DS, Sharma R, Singh M, Venkatesan K, Sharma VD (2010) Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microb Drug Resist 16:21–28

    Article  PubMed  CAS  Google Scholar 

  • Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ (2007) Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Anitmicrob Chemother 60:145–147

    Article  CAS  Google Scholar 

  • He GX, Varela MF. EmrF, a novel SMR family multidrug efflux pump in Enterobacter cloacae. Abstracts of the 46th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 27 to 30 September 2006, San Francisco, California. Abstract C1-1488 (p87)

    Google Scholar 

  • Henwood CJ, Gatward T, Warner M, James D, Stockdale MW, Spence RP, Towner KJ, Livermore DM, Woodford N (2002) Antibiotic resistance among clinical isolates of Acinetobacter in the UK, and in vitro evaluation of tigecycline (GAR-936). Antimicrob Agents Chemother 49:479–487

    Article  CAS  Google Scholar 

  • Hiller D, Stahl S, Morschhauser J (2006) Multiple cis-acting sequences mediate upregulation of the MDR1 efflux pump in a fluconazole-resistant Candida albicans isolate. Antimicrob Agents Chemother 50:2300–2308

    Article  PubMed  CAS  Google Scholar 

  • Hoban DJ, Bouchillon SK, Johnson BM, Johnson JL, Dowzicky MJ (2005) In vitro activity of tigecycline against 6792 Gram-negative and Gram-positive clinical isolates from the global Tigecycline Evaluation and Surveillance Trial (TEST Program, 2004). Diagn Microbiol Infect Dis 52:215–227

    Article  PubMed  CAS  Google Scholar 

  • Hornsey M, Ellington MJ, Doumith M, Hudson S, Livermore DM, Woodford N (2010) Tigecycline resistance in Serratia marcescens associated with up-regulation of the Sde-XY-HasF efflux system also active against ciprofloxacin and cefpirome. J Antimicrob Chemother 65:479–482

    Article  PubMed  CAS  Google Scholar 

  • Jones RN, Huynh HK, Biedenbach DJ, Fritische TR, Sader HS (2004) Doripenem (S-4461), a novel carbapenem: comparative activity against contemporary pathogens including bactericidal action and preliminary in vitro methods evaluations. J Antimicrob Chemother 54:144–154

    Article  PubMed  CAS  Google Scholar 

  • Jumbe NL, Louie A, Miller MH, Liu W, Deziel MR, Tam VH, Bachhawat R, Drusano GL (2006) Quinolone efflux pumps play a central role in emergence of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 50:310–317

    Article  PubMed  CAS  Google Scholar 

  • Keeney D, Ruzin A, Bradford PA (2007) RamA, a transcriptional regulator, and AcrAB, a RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist Mech Epidemiol Dis 13:1–6

    CAS  Google Scholar 

  • Kim HM, Xu Y, Lee M, Piao S, Sim SH, Ha NC, Lee K (2010) Functional relationships between the AcrA hairpin tip region and the ToIC aperture tip region for the formation of the bacterial tripartite efflux pump AcrAB-ToIC. J Bacteriol 192:4498–4503

    Article  PubMed  CAS  Google Scholar 

  • King P, Gentile A, Saechao B, Myers M, Lokovskaya O. Impact of efflux pumps and target mutations on activity of multiple fluoroquinolones (FQs) against Pseudomonas aeruginosa (PA). Abstracts of the 46th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 27 to 30 September 2006, San Francisco, California. Abstract C1-44 (p67)

    Google Scholar 

  • Kiser TH, Obritsch MD, Jung R, MacLaren R, Fish DN (2010) Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Pharmacotherapy 30:632–638

    Article  PubMed  CAS  Google Scholar 

  • Kolaczkowski M, Kolaczkowska A, Stermitz FR (2009) Modulation of the antifungal activity of new medicinal plant extracts active on Candida glabrata by the major transporters and regulators of the pleiotropic drug-resistance network in Saccharomyces cerevisiae. Microb Drug Resist 15:11–17

    Article  PubMed  CAS  Google Scholar 

  • Lister PD, Wolter DJ (2005) Levofloxacin-imipenem combination prevents the emergence of resistance among clinical isolates of Pseudomonas aeruginosa. Clin Infect Dis 40:S105–S114

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:634–640

    Article  PubMed  CAS  Google Scholar 

  • Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem Pharmacol 71:910–918

    Article  PubMed  CAS  Google Scholar 

  • Lynch AS (2006) Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view. Biochem Pharmacol 71:949–956

    Article  PubMed  CAS  Google Scholar 

  • Magnet S, Courvalin P, Lambert T (2001) Resistant-nodulation-cell-division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45:3375–3380

    Article  PubMed  CAS  Google Scholar 

  • Mahamoud A, Chevalier J, Davin-Regli A, Barbe J, Pages JM (2006) Quinolone derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr Drug Targets 7:843–847

    Article  PubMed  CAS  Google Scholar 

  • Mahamoud A, Chevalier J, Alibert-Franco S, Kern WV, Pagès J-M (2007) Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother 59:1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Maniati M, Ikonomidis A, Mantzana P, Daponte A, Maniatis AN, Pournaras S (2007) A highly carbapenem-resistant Pseudomonas aeruginosa isolate with a novel bla VIM-4/bla P1b integron overexpresses two efflux pumps and lacks OprD. J Antimicrob Chemother 60:132–135

    Article  PubMed  CAS  Google Scholar 

  • Marchand I, Damier-Piolle L, Courvalin P, Lambert T (2004) Expression of RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother 48:3298–3304

    Article  PubMed  CAS  Google Scholar 

  • Martí S, Fernández-Cuenca F, Pascual A et al (2006) Prevalence of the tetA and tetB genes as mechanisms of resistance to tetracycline and minocycline in Acinetobacter baumannii clinical isolates. Enferm Infecc Microbiol Clin 24:77–80

    Article  PubMed  Google Scholar 

  • McAleese F, Petersen P, Ruzin A, Dunman PM, Murphy E, Projan SJ, Bradford PA (2005) A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 49:1865–1871

    Article  PubMed  CAS  Google Scholar 

  • McDermott PF, Walker RD, White DG (2003) Antimicrobials: modes of action and mechanisms of resistance. Int J Toxicol 22:135–143

    Article  PubMed  CAS  Google Scholar 

  • McMurry LM, Petrucci RE Jr, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 77:3974–3977

    Article  PubMed  CAS  Google Scholar 

  • Ochs MM, McCusker MP, Bains M, Hancock RE (1999) Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 43:1085–1090

    PubMed  CAS  Google Scholar 

  • Ohara M, Kouda S, Onodera M, Fujiue Y, Sasaki M, Kohara T et al (2007) Molecular characterization of imipenem-resistant Pseudomonas aeruginosa in Hiroshima, Japan. Microbiol Immunol 51:271–277

    PubMed  CAS  Google Scholar 

  • Olson MW, Ruzin A, Feyfant E, Rush TS III, O’Connell J, Bradford PA (2006) Functional, biophysical, and structural bases for antibacterial activity of tigecycline. Antimicrob Agents Chemother 50:2156–2166

    Article  PubMed  CAS  Google Scholar 

  • Pachón-Ibáñez ME, Jiménez-Mejías ME, Pichardo C, Llanos AC, Pachón J (2004) Activity of tigecycline (GAR-936) against Acinetobacter baumannii strains, including those resistant to imipenem. Antimicrob Agents Chemother 48:4479–4481

    Article  PubMed  Google Scholar 

  • Peleg AY, Adams J, Paterson DL (2007a) Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 51:2065–2069

    Article  PubMed  CAS  Google Scholar 

  • Peleg AY, Potoski BA, Rea R, Adams J, Sethi J, Capitano B, Husain S, Kwak EJ, Bhat SV, Paterson DL (2007b) Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 59:128–131

    Article  PubMed  CAS  Google Scholar 

  • Petersen PJ, Jacobus NV, Weiss WJ et al (1999) In vitro and in vivo anti-bacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother 43:738–744

    PubMed  CAS  Google Scholar 

  • Poole K (2002) Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92(Suppl 1):55S–64S

    Article  PubMed  Google Scholar 

  • Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51

    Article  PubMed  CAS  Google Scholar 

  • Piddock LJ, Garvey MI, Rahman MM, Gibbons S (2010) Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J Antimicrob Chemother 65:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Pumbwe L, Smith R, Chang A, Wexler HM. The RND transporter, BmeRABC-5, is a metronidazole efflux system in Bacteroides fragilis. Abstracts of the 46th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 27 to 30 September 2006, San Francisco, California. Abstract C1-1485 (p86)

    Google Scholar 

  • Quinn T, O’Mahony R, Baird AW, Drudy D, Whyte P, Fanning S (2006) Multi-drug resistance in Salmonella enterica: efflux mechanisms and their relationship with the development of chromosomal resistance gene clusters. Curr Drug Targets 7:849–860

    Article  PubMed  CAS  Google Scholar 

  • Quinn T, Bolla J-M, Pagès J-M, Fanning S (2007) Antibiotic-resistant Campylobacter: could efflux pump inhibitors control infection? J Antimicrob Chemother 59:1230–1236

    Article  PubMed  CAS  Google Scholar 

  • Ramón-García S, Martín C, Aínsa JA, De Rossi E (2006) Characterization of tetracycline resistance mediated by the efflux pump Tap from Mycobacterium fortuitum. J Antimicrob Chemother 57:252–259

    Article  PubMed  Google Scholar 

  • Rice LB (2006) Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect Dis 43:S100–S105

    Article  PubMed  CAS  Google Scholar 

  • Rouquette-Loughlin C, Balthazar JT, Shafer WM (2005) Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 56:856–860

    Article  PubMed  CAS  Google Scholar 

  • Ruzin A, Keeney D, Bradford PA (2005a) AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicrob Agents Chemother 49:791–793

    Article  PubMed  CAS  Google Scholar 

  • Ruzin A, Visalli MA, Keeney D, Bradford PA (2005b) Influence of transcriptional activator RamA on expression of multidrug effluz pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 49:1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Ruzin A, Immermann FW, Bradford PA (2010) RT-PCR and statistical analyses of adeABC expression in clinical isolates of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Microb Drug Resist 16:87–89

    Article  PubMed  CAS  Google Scholar 

  • Schumacher A, Steinke P, Bohnert JA, Akova M, Jonas D, Kern WV (2006) Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli. J Antimicrob Chemother 57:344–348

    Article  PubMed  CAS  Google Scholar 

  • Schumacher A, Trittler R, Bohnert J, Kümmerer K, Pagès J-M, Kern WV (2007) Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother 59:1261–1264

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan VB, Virk RK, Kaundal A, Chakraborty R, Datta B, Ramamurthy T, Mukhopadhyay AK, Ghosh A (2006) Mechanism of drug resistance in clonally related clinical isolates of Vibrio fluvialis isolated in Kolkata, India. Antimicrob Agents Chemother 50:2428–2432

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Musuka S, Sherman C, Meek C, Leff R, Gumbo T (2010) Efflux-pump-derived multiple drug resistance to ethambutol monotherapy in Mycobacterium tuberculosis and the pharmacokinetics and pharmacodynamics of ethambutol. J Infect Dis 201:1225–1231

    Article  PubMed  CAS  Google Scholar 

  • Stavri M, Piddock LJV, Gibbons S (2007) Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother 59:1247–1260

    Article  PubMed  CAS  Google Scholar 

  • Stein GE, Craig WA (2006) Tigecycline: a critical analysis. Clin Infect Dis 43:518–524

    Article  PubMed  CAS  Google Scholar 

  • Su C-C, Rutherford DJ, Yu EW (2007) Characterization of the multidrug efflux regulator AcrR from Escherichia coli. Biochem Biophys Res Commun 361:85–90

    Article  PubMed  CAS  Google Scholar 

  • Takatsuka Y, Chen C, Nikaido H (2010) Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci USA 107:6559–6565

    Article  PubMed  CAS  Google Scholar 

  • Tam VH, Chang K-T, LaRocco MT, An S, McCauley SK, Poole K, Garey KW (2007) Prevalence, mechanisms, and risk factors of carbapenem resistance in blood stream isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 58:309–314

    Article  PubMed  CAS  Google Scholar 

  • Thamlikitkul V, Trakulsomboon S (2006) In vitro activity of tigecycline against Burkholderia pseudomallei and Burkholderia thailandensis. Antimicrob Agents Chemother 50:1555–1557

    Article  PubMed  CAS  Google Scholar 

  • Tuckman M, Petersen PJ, Howe A, Orlowski M, Mullen S, Chan K, Bradford PA, Jones CH (2007) Occurrence of tetracycline resistance genes among Escherichia coli isolates from Phase 3 clinical trials for tigecycline. Antimicrob Agents Chemother 51:3205–3211

    Article  PubMed  CAS  Google Scholar 

  • Vaccaro L, Koronakis V, Sansom MS (2006) Flexibility in a drug transport accessory protein: molecular dynamics simulations of MexA. Biophys J 91:558–564

    Article  PubMed  CAS  Google Scholar 

  • Vila J, Martí S, Sánchez-Céspedes J (2007) Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother 59:1210–1215

    Article  PubMed  CAS  Google Scholar 

  • Visalli MA, Murphy E, Projan SJ, Bradford PA (2003) AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob Agents Chemother 47:665–669

    Article  PubMed  CAS  Google Scholar 

  • Webber MA, Pidock LJV (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11

    Article  PubMed  CAS  Google Scholar 

  • Welch A, Awah CU, Jing S, van Heen HW, Venter H (2010) Promiscuous partnering and independent activity of MexB, the multidrug transporter protein from Pseudomonas aeruginosa. Biochem J 430:355–364

    Article  PubMed  CAS  Google Scholar 

  • Wright GD (2003) Mechanisms of resistance to antibiotics. Curr Opin Chem Biol 7:563–569

    Article  PubMed  CAS  Google Scholar 

  • Yamame K, Wachino J, Kimura K, Suzuki S, Shibata N, Arakawa Y. Novel plasmid-mediated fluoroquinolone efflux pump, Qep, identified in Escherichia coli. Abstracts of the 46th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 27 to 30 September 2006, San Francisco, California. Abstract C1-586 (p73)

    Google Scholar 

  • Yang YL, Lin YH, Tsao MY, Chen CG, Shih HI, Fan JC, Wang JS, Lo HJ (2006) Serum repressing efflux pump CFR1 in Candida albicans. BMC Mol Biol 7:22

    Article  PubMed  Google Scholar 

  • Yoneyama H, Katsumata R (2006) Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci Biotechnol Biochem 70:1060–1075

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara E, Eda S (2007) Diversity in the oligomeric channel structure of the multidrug efflux pumps in Pseudomonas aeruginosa. Microbiol Immunol 51:47–52

    PubMed  CAS  Google Scholar 

  • Zhang Z, Liu ZQ, Zheng PY, Tang FA, Yang PC (2010) Influence of efflux pump inhibitors on the multidrug resistance of Helicobacter pylori. World J Gastroenterol 16:1279–1284

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. David G. McIntosh .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

None declared

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McIntosh, E.D.G. (2012). Efflux: How Bacteria Use Pumps to Control Their Microenvironment. In: Coates, A. (eds) Antibiotic Resistance. Handbook of Experimental Pharmacology, vol 211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28951-4_10

Download citation

Publish with us

Policies and ethics