Skip to main content

A Maintenance Alarm for Alternators Based on Eigensolutions

  • Conference paper
Condition Monitoring of Machinery in Non-Stationary Operations

Abstract

The complex structural dynamic behaviour of turbo-alternators and their sub-assemblies must be well understood in order to insure their reliable and safe operation. In practice, important variations in response behaviours are observed in a population of otherwise nominally identical installations due to numerous and significant sources of variability: construction differences, manufacturing and assembly tolerances, variable thermal and nonlinear effects, and so on. These physical variations can sometimes lead to unexpectedly high response levels in the stator and a decision indicator is sought to signal the need for special maintenance procedures. Ideally, measurements in operation would be performed to obtain the necessary information but, for technical reasons, this is not currently possible. Meanwhile, the machines are generally disassembled for standard maintenance every five years. In this article, a maintenance alarm is formulated based on modal tests performed on the stator with the rotor removed. The objective is to usefully bound the stator response in operation based on the identified eigensolutions obtained on the stator alone. However, it is known that thermal and nonlinear mechanical effects of the functioning alternator modify the associated eigenparameters. Since these effects are not well known, an info-gap robustness analysis is performed to investigate the impact of this lack of knowledge on the response levels of interest. A stator assembly must be able to tolerate reasonable levels of uncertainty without exceeding a critical response level or it will require maintenance and repair. The proposed methodology is illustrated on a simplified numerical model of a stator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Haim, Y.: Information-Gap Theory: Decisions Under Severe Uncertainty. Academic Press, London (2001)

    MATH  Google Scholar 

  2. Farrar, C.R., Doebling, S.W., Nix, D.A.: Vibration-Based Structural Damage Identification. Philosophical Transactions of the Royal Society: Mathematical. Physical & Engineering Sciences (2001)

    Google Scholar 

  3. Keren, C., Ben-Haim, Y.: Info gap Bayesian Classification, Master Thesis, Haifa (2009)

    Google Scholar 

  4. O’ Callahan, J.C., Avitabile, P., Riemer, R.: System equivalent reduction expansion process (SEREP). In: IMAC VII, pp. 29–37 (1989)

    Google Scholar 

  5. Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R., Czarnecki, J.J.: A Review of Structural Health Monitoring Literature, Los Alamos (2004)

    Google Scholar 

  6. Worden, K., Farrar, C., Manson, G., Park, G.: The Fundamental Axioms of Structural Health Monitoring. Philosophical Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences 463(2082), 1639–1664 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Kuczkowiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Kuczkowiak, A., Cogan, S., Ouisse, M., Foltête, E., Corus, M. (2012). A Maintenance Alarm for Alternators Based on Eigensolutions. In: Fakhfakh, T., Bartelmus, W., Chaari, F., Zimroz, R., Haddar, M. (eds) Condition Monitoring of Machinery in Non-Stationary Operations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28768-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28768-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28767-1

  • Online ISBN: 978-3-642-28768-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics