Skip to main content

Chemical Vapor Synthesis of Nanocrystalline Oxides

  • Chapter
  • First Online:
Book cover Nanoparticles from the Gasphase

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The generation of nanoparticles in the gas phase by Chemical Vapor Synthesis (CVS) may be described from the point of view of chemical engineering as a sequence of unit operations among which reactant delivery, reaction energy input, and product separation are key processes which determine the product characteristics and quality required by the applications of nanoparticles and powders. In case of CVS, the volatility of the reactants (precursors) may severely limit the possible type of products as well as the production rate. It is shown that these limits can be lifted by use of a laser flash evaporator which also enables the use of precursor mixtures for the production of complex oxides as shown for Co-doped ZnO and the pulsed operation to influence powder characteristics. The mode in which energy is supplied to the particle synthesis reactor has also substantial influence on particle and powder characteristics as is shown for TiO\(_{2}\) using different time-temperatureprofiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Rodriguez, M. Fernandez-Garcia, Synthesis, Properties and Applications of Oxide Nanomaterials (Wiley-Interscience, New York, 2007)

    Book  Google Scholar 

  2. G.W. Kriechbaum, P. Kleinschmidt, Adv. Mater. 1, 330 (1989)

    Article  Google Scholar 

  3. A. Gutsch, H. Mühlenweg, M. Krämer, Small 1, 31 (2005)

    Google Scholar 

  4. M. Winterer, Nanocrystalline CeramicsSynthesis and Structure (Springer, Heidelberg, 2002)

    Google Scholar 

  5. I. Matsui, J. Nanopart. Res. 8, 429 (2006)

    Article  Google Scholar 

  6. M. Leskelä, M. Ritala, Angew. Chem. Int. Ed. 42, 5548 (2003)

    Article  Google Scholar 

  7. T. Masuda, S.R. Mukai, H. Fujikawa, Y. Fujikata, K. Hashimoto, Mat. Manufact. Proc. 9, 237 (1994)

    Article  Google Scholar 

  8. N.E. Pereira, X.W. Ni, Chem. Eng. Sci. 56, 735 (2001)

    Article  Google Scholar 

  9. N. Jongen, M. Donnet, P. Bowen, J. Lemaitre, H. Hofmann, R. Schenk, C. Hofmann, M. Aoun-Habbache, S. Guillemet-Fritsch, J. Sarrias, A. Rousset, M. Viviani, M.T. Buscaglia, V. Buscagkia, P. Nanni, A. Testino, J.R. Herguijuela, Chem. Eng. Technol. 26, 303 (2003)

    Article  Google Scholar 

  10. B.K.H. Yen, A. Günther, M.A. Schmidt, K.F. Jensen, M.G. Bawendi, Angew. Chem. Int. Ed. 44, 5447 (2005)

    Article  Google Scholar 

  11. M. Winterer, V.V. Srdic, R. Djenadic, A. Kompch, T.E. Weirich, Rev. Sci. Instrum. 78, 123903 (2007)

    Article  ADS  Google Scholar 

  12. O. Levenspiel, Chemical Reaction Engineering 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  13. M. Jakubith, Chemische VerfahrenstechnikEinführung in Reaktionstechnik und Grundoperationen (VCH, New York, 1991)

    Google Scholar 

  14. S.K. Friedlander, Smoke, Dust, and HazeFundamentals of Aerosol Dynamics, 2nd edn. (Oxford University Press, Oxford, 2000)

    Google Scholar 

  15. T.T. Kodas, S.K. Friedlander, AIChE J. 34, 551 (1998)

    Article  Google Scholar 

  16. G.-M. Chow, K.E. Gonsalves, NanotechnologyMolecular Designed Materials, ACS Symphosium Series, vol. 662 (American Ceramic Society, Washington, DC, 1996)

    Google Scholar 

  17. R.C. Flagan, M.M. Lunden, Mat. Sci. Eng. A 204, 113 (1995)

    Article  Google Scholar 

  18. X. Chen, S.S. Mao, J. Nanosci. Nanotechnol. 6, 906 (2006)

    Article  Google Scholar 

  19. G. Li, L. Li, J. Boerio-Goates, B. Woodfield, J. Am. Chem. Soc. 127, 8659 (2005)

    Google Scholar 

  20. R. Djenadic, S.R. Chowdhury, M. Spasova, M. Gondorf, E. Akyildiz, M. Winterer, Mater. Res. Soc. Symp. Proc. 1056, 1056-HH08-07 (2008)

    Google Scholar 

  21. K. Nakaso, K. Okuyama, M. Shimada, S.E. Pratsinis, Chem. Eng. Sci. 58, 3327 (2003)

    Article  Google Scholar 

  22. R.N. Grass, S. Tsantilis, S.E. Pratsinis, AIChE J. 52, 1318 (2006)

    Article  Google Scholar 

  23. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  24. K. Sato, H. Katayama-Yoshida, Phys. E 10, 251 (2001)

    Article  Google Scholar 

  25. M.J. Winterer, Phys. IV 7, C2–243 (1997)

    Google Scholar 

  26. A.L. Ankudinov, B. Ravel, J.J. Rehr, R.C. Albers, S.D. Conradson, Phys. Rev. B 58, 7565 (1998)

    Article  ADS  Google Scholar 

  27. R. Djenadic, G. Akgül, K. Attenkofer, M. Winterer, J. Phys. Chem. C 114, 9207 (2010)

    Article  Google Scholar 

  28. S. Kolesnik, B. Dabrowski, J. Mais, J. Appl. Phys. 95, 2582 (2004)

    Article  ADS  Google Scholar 

  29. A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, R. Seshadri, Phys. Rev. B 68, 205202 (2003)

    Article  ADS  Google Scholar 

  30. L.B. Duan, W.G. Chu, J. Yu, Y.C. Wang, L.N. Zhang, G.Y. Liu, J.K. Liang, G.H. Rao, J. Magn. Magn. Mater. 320, 1573 (2008)

    Article  Google Scholar 

  31. V. Jayaram, J. Rajkumar, B.S. Rani, J. Am. Ceram. Soc. 82, 473 (1999)

    Article  Google Scholar 

  32. T.A. Schaedler, A.S. Gandhi, M. Saito, M. Rühle, R. Gambino, C.G. Levi, J. Mater. Res. 12, 791 (2006)

    Article  ADS  Google Scholar 

  33. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatev, P.B. Straumal, B. Baretzky, Acta Mater. 56, 6246 (2008)

    Article  Google Scholar 

  34. B. Straumal, B. Baretzky, A. Mazilkin, S. Protasova, A. Myatev, P. Straumal, J. Eur. Ceram. Soc. 29, 1963 (2009)

    Article  Google Scholar 

  35. M. Gaudon, O. Toulemonde, A. Demourgues, Inorg. Chem. 46, 10996 (2007)

    Article  Google Scholar 

  36. H.K. Kammler, L. Mädler, S.E. Pratsinis, Chem. Eng. Technol. 24, 6 (2001)

    Google Scholar 

  37. T. Liu, H. Xu, W.S. Chin, Z. Yong, A.T.S. Wee, J. Phys. Chem. C 112, 3489 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the generous support by the Collaborative Research Center SFB 445 ‘Nanoparticles from the Gas Phase’ funded by the German Research Foundation. We are also very thankful to Dr. Marina Spasova (team of Prof. Farle) and Dr. Ralf Theissmann (team of Prof. Schmechel) for providing the TEM images, Kerstin Brauner (team of Prof. Epple) for the determination of the chemical composition by atomic adsorption spectroscopy, Andreas Gondorf (team of Prof. Lorke) for the FTIR spectra, and Dr. Adam Webb at HASYLAB/DESY for supporting us at beamline X1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Winterer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Djenadic, R., Winterer, M. (2012). Chemical Vapor Synthesis of Nanocrystalline Oxides. In: Lorke, A., Winterer, M., Schmechel, R., Schulz, C. (eds) Nanoparticles from the Gasphase. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28546-2_2

Download citation

Publish with us

Policies and ethics