Skip to main content

Nanopatterning and Self-Assembly in Microsystems: An Overview

  • Chapter
  • First Online:
Bio and Nano Packaging Techniques for Electron Devices

Abstract

For the further development of micro- and nanotechnology, it is offundamental importance that it is possible to fabricate structureswith dimensions and distances on the nanometer scale with high yieldand small manufacturing tolerances for diverse applicationsincluding devices with high aspect ratio as well as for a wide rangeof different materials. In general, the aim is to produce or deposittwo- or three-dimensional structures in or on top of a layer. On theone hand, it should be possible to transfer structures designed inthe form of geometric patterns (layout), either by using masks,stamps or templates, or masklessly direct writing. However nanoscalestructures can also be produced with a completely different approachby self-organization. In this case, the information for theformation of structures is already contained in the material. In this chapter,various approaches are presented for producing nanoscale structuresusing both nanopatterning and self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aichmayer, B., Mertig, M., Kirchner, A., Paris, O., Fratzl, P.: Small-angle scattering of S-layer metallization. Adv. Mater. 18, 915–919 (2006)

    Article  CAS  Google Scholar 

  2. Allemand, J.F., Bensimon, D., Jullien, L., Bensimon, A., Croquette, V.: pH-dependent specific binding and combing of DNA. Biophys. J. 73, 2064–2070 (1997)

    Article  CAS  Google Scholar 

  3. Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L.P., Pedersen, J.S., Birkedal, V., Besenbacher, F., Gothelf, K.V., Kjems, J.: Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009)

    Article  CAS  Google Scholar 

  4. Balla, T., Spearing, S.M., Monk, A.: An assessment of process capabilities of nanoimprint lithography. J. Phys. D: Appl. Phys. 41, 174001–174010 (2008)

    Article  Google Scholar 

  5. Baumeister, W., Engelhardt, H.: Membranous structures: electron microscopy of proteins, vol. 6, chap. Three-dimensional structure of bacterial surface layers. Academic Press, London (1997)

    Google Scholar 

  6. Berti, L., Alessandrini, A., Facci, P.: DNA-templated photoinduced silver deposition. J. Am. Chem. Soc. 127, 11216 (2005)

    Google Scholar 

  7. Bhatt, K.H., Velev, O.D.: Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir 20, 467–476 (2004)

    Article  CAS  Google Scholar 

  8. Bhushan, B. (ed.): Springer Handbook of Nanotechnology, 1st edn. Springer, Berlin (2004)

    Google Scholar 

  9. Braun, E., Eichen, Y., Sivan, U., Ben-Yoseph, B.: DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998)

    Article  CAS  Google Scholar 

  10. Breitwieser, A., Küpcü, S., Howorka, S., Weigert, S., Langer, C., Hoffmann-Sommergruber, K., Scheiner, O., Sleytr, U.B., Sára, M.: 2-D protein crystals as an immobilization matrix for producing reaction zones in dipstick-style immunoassays. BioTechniques 21, 918–925 (1996)

    CAS  Google Scholar 

  11. Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D., Winkler, J., Lockhart, D., Morris, M.S., Fodor, S.P.A.: Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996)

    Article  CAS  Google Scholar 

  12. Cheng, C., Gonela, R., Gu, Q., Haynie, D.T.: Self-assembly of metallic nanowires from aqueous solution. Nano Lett. 5, 175–178 (2005)

    Article  CAS  Google Scholar 

  13. Cheng, C., Haynie, D.T.: Growth of single conductive nanowires at prescribed loci. Appl. Phys. Lett. 87, 263112 (2005)

    Google Scholar 

  14. Chou, S.Y., Krauss, P.R., Zhang, W., Guo, L., Zhuang, L.: Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15, 2897–2904 (1997)

    Article  CAS  Google Scholar 

  15. Coffer, J.L., Bigham, S.R., Li, X., Rho, Y., Young, G., Pirtle, R.M., Pirtle, I.L.: Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl. Phys. Lett. 69, 3851-3853 (1996)

    Google Scholar 

  16. Colombi Ciacchi, L., Mertig, M., Seidel, R., Pompe, W., De Vita, A.: Nucleation of platinum clusters on biopolymers: a first principles study of the molecular mechanisms. Nanotechnology 14, 840–848 (2003)

    Google Scholar 

  17. Ciacchi Colombi, L., Pompe, W., De Vita, A.: Initial nucleation of platinum clusters after reduction of \({\rm K}_2{\rm PtCl}_4\) in aqueous solution: A first principles study. J. Am. Chem. Soc. 123, 7371–7380 (2001)

    Google Scholar 

  18. Ciacchi Colombi, L., Pompe, W., De Vita, A.: Growth of platinum clusters via addition of Pt(II) complexes: a first principles investigation. J. Phys. Chem. B 107, 1755–1764 (2003)

    Google Scholar 

  19. Dinu, C.Z., Opitz, J., Pompe, W., Howard, J., Mertig, M., Diez, S.: Parallel manipulation of bifunctional DNA molecules on structured surfaces using kinesin-driven microtubules. Small 2, 1090–1098 (2006)

    Article  CAS  Google Scholar 

  20. Dong, L., Bush, J., Chirayos, V., Solanki, R., Jiao, J., Ono, Y., Conley Jr, C.F., Ulrich, B.D.: Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett. 5, 2112–2115 (2005)

    Google Scholar 

  21. Douglas, K., Clark, N.A., Rothschild, K.J.: Nanometer molecular lithography. Appl. Phys. Lett. 48, 676–679 (1986)

    Article  CAS  Google Scholar 

  22. Douglas, S.M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009)

    Article  CAS  Google Scholar 

  23. Dürr, P., Dauderstädt, U., Kunze, D., Auvert, M., Lakner, H.: Reliability test and failure analysis of optical MEMS. In: Proceedings of the 9th IPFA, pp. 201–206 (2002)

    Google Scholar 

  24. Endo, M., Katsuda, Y., Hidaka, K., Sugiyama, H.: Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. J. Am. Chem. Soc. 132, 1592–1597 (2010)

    Article  CAS  Google Scholar 

  25. Erler, C., Günther, K., Mertig, M.: Photo-induced synthesis of DNA-templated metallic nanowires and their integration into micro-fabricated contact arrays. Appl. Surf. Sci. 255, 9647–9651 (2009)

    Article  CAS  Google Scholar 

  26. Flagello, D., Streefkerk, B., Hoogendorp, M., Wagner, C., Mulkens, J.: Status and outlook for ArF immersion lithography. In: Immersion and 157 nm symposium, Vancouver (2004)

    Google Scholar 

  27. Guan, J., Lee, L.J.: Generating highly ordered DNA nanostrand arrays. Proc. Natl. Acad. Sci. USA 102, 18321–18325 (2005)

    Google Scholar 

  28. Guo, L.J.: Recent progress in nanoimprint technology and its application. J. Phys. D: Phys. 37, R123–R141 (2004)

    Article  CAS  Google Scholar 

  29. Guo, L.J.: Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)

    Article  CAS  Google Scholar 

  30. Han, D., Pal, S., Liu, Y., Yan, H.: Folding and cutting dna into reconfigurable topological nanostructures. Nat. Nanotechnol. 5, 712–717 (2010)

    Article  CAS  Google Scholar 

  31. Hermanson, K.D., Lumsdon, S.O., Williams, J.P., Kaler, E.W., Velev, O.D.: Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294, 1082–1086 (2001)

    Article  CAS  Google Scholar 

  32. International Technology Roadmap for Semiconductors: Technical Report, ITRS. http://www.itrs.net (2009)

  33. Keren, K., Berman, R.S., Buchstab, E., Sivan, U., Braun, E.: DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003)

    Article  CAS  Google Scholar 

  34. Keren, K., Krüger, M., Gilad, R., Ben-Yoseph, G., Sivan, U., Braun, E.: Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002)

    Article  CAS  Google Scholar 

  35. Kershner, R.J., Bozano, L.D., Micheel, C.M., Hung, A.H., Fornof, A.R., Cha, J.N., Rettner, C.T., Bersani, M., Frommer, J., Rothemund, P.W.K., Wallraff, G.M.: Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4, 557–561 (2009)

    Article  CAS  Google Scholar 

  36. Kirsch, R., Mertig, M., Pompe, W., Wahl, R., Sadowski, G., Böhm, K.J., Unger, E.: Three-dimensional metallization of microtubules. Thin Solid Films 305, 248–253 (1997)

    Article  CAS  Google Scholar 

  37. Krupke, R., Hennrich, F., von Löhneysen, H., Kappes, M.M.: Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003)

    Article  CAS  Google Scholar 

  38. Lakner, H., Dürr, P., Dauderstädt, U., Doleschal, W., Amelung, J.: Design and fabrication of micromirror arrays for UV lithography. In. Proceedings of SPIE, vol. 4561, 255–264 (2001)

    Google Scholar 

  39. Lin, C., Ke, Y., Liu, Y., Mertig, M., Gu, J., Yan, H.: Functional DNA nanotube arrays: bottom-up meets top-down. Angew. Chem. Int. Ed. 46, 6089–6092 (2007)

    Article  CAS  Google Scholar 

  40. Lippert, B.: Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley-VCH, Weinheim (1999)

    Book  Google Scholar 

  41. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. 50, 264–267 (2010)

    Article  Google Scholar 

  42. Lumsdon, S.O., Scott, D.M.: Assembly of colloidal particles into microwires using an alternating electric field. Langmuir 21, 4874–4880 (2005)

    Article  CAS  Google Scholar 

  43. Madou, M.: Fundamentals of Microfabrication. CRC Press LLC, Boca Raton (1997)

    Google Scholar 

  44. Mann, S.: Biomimetic materials chemistry, Chap. 1. Biomineralization and biomimetic materials chemistry. VCH Publisher, New York (1996)

    Google Scholar 

  45. Mann, S.: Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 8, 782–792 (2009)

    Article  Google Scholar 

  46. Mertig, M., Colombi Ciacchi, L., Benke, A., Huhle, A., Opitz, J., Seidel, R., Schackert, H.K., Pompe, W.: Foundations of Nanoscience: Self-assembled Architectures and Devices, Chap. DNA-Based Fabrication of Metallic Wires and Networks. Science Technica Inc (2004)

    Google Scholar 

  47. Mertig, M.: Colombi Ciacchi, L., Seidel, R., Pompe, W., De Vita, A.: DNA as a selective metallization template. NanoLetters 2, 841–844 (2002)

    Article  CAS  Google Scholar 

  48. Mertig, M., Kirsch, R., Pompe, W.: Biomolecular approach to nanotube fabrication. Appl. Phys. A 66, S723–S727 (1998)

    Article  CAS  Google Scholar 

  49. Mertig, M., Kirsch, R., Pompe, W., Engelhardt, H.: Fabrication of highly oriented nanocluster arrays by biomolecular templating. Eur. Phys. J. D 9, 45–48 (1999)

    Article  CAS  Google Scholar 

  50. Mertig, M., Pompe, W.: Nanobiotechnology-Concepts, Applications and Perspectives, Chap. Biomimetic Fabrication of DNA-Based Metallic Nanowires and Networks. WILEY-VCH Verlag GmbH& Co. KgaA, Weinheim (2004)

    Google Scholar 

  51. Moreau, W.M.: Semiconductor Lithography—Principles. Practices and Materials. Plenium Press, New York (1988)

    Book  Google Scholar 

  52. Nirschl, M., Blüher, A., Erler, C., Katzschner, B., Vikholm-Lundin, V., Auer, S., Vörös, J., Pompe, W., Schreiter, M., Mertig, M.: Film bulk acoustic resonators for DNA and protein detection and investigation of in vitro bacterial S-layer formation. Sens. Actuators, A 156, 180–184 (2009)

    Google Scholar 

  53. Owa, S., Nagasaka, H.: Immersion lithography: its history, current status and future prospects. In: Proceedings of SPIE, vol. 7140, pp. 714015-1–714015-12 (2008)

    Google Scholar 

  54. Pazirandeh, M., Baral, S., Campbell, J.R.: Metallized nanotubules derived from bacteria. Biomimetics 1, 41–50 (1992)

    CAS  Google Scholar 

  55. Pohl, H.A.: Dielectrophoresis. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  56. Pum, D., Sleytr, U.B.: Large-scale reconstitution of crystalline bacterial surface layer proteins at the air-water interface and on lipid films. Thin Solid Films 244, 882–886 (1994)

    Article  CAS  Google Scholar 

  57. Ranjan, N., Vinzelberg, H., Mertig, M.: Growing one-dimensional metallic nanowires by dielectrophoresis. Small 2, 1490–1496 (2006)

    Article  CAS  Google Scholar 

  58. Richter, J., Mertig, M., Pompe, W., Mönch, I., Schackert, H.K.: Construction of highly conductive nanowires on a DNA template. Appl. Phys. Lett. 78, 536–538 (2001)

    Article  CAS  Google Scholar 

  59. Richter, J., Mertig, M., Pompe, W., Vinzelberg, H.: Low-temperature resistance of DNA-templated nanowires. Appl. Phys. A 74, 725–728 (2002)

    Article  CAS  Google Scholar 

  60. Richter, J., Seidel, R., Kirsch, R., Mertig, M., Pompe, W., Plaschke, J., Schackert, H.K.: Nanoscale palladium metallization of DNA. Adv. Mater. 12, 507–510 (2000)

    Article  CAS  Google Scholar 

  61. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  CAS  Google Scholar 

  62. Saitou, N.: Handbook of Semiconductor Manufactoring Technology, Chap. 1. Electron-Beam Lithography. Marcel Dekker, New York (2000)

    Google Scholar 

  63. Schnur, J.M.: Lipid tubules: a paradigm for molecularly engineered structures. Science 262, 1669–1676 (1993)

    Article  CAS  Google Scholar 

  64. Seeman, N.C.: DNA in a material world. Nature 421, 427–431 (2003)

    Article  Google Scholar 

  65. Seidel, R., Colombi Ciacchi, L., Weigel, M., Pompe, W., Mertig, M.: Synthesis of platinum cluster chains on DNA templates: conditions for a template-controlled cluster growth. J. Phys. Chem. B 108, 10801–10811 (2004)

    Google Scholar 

  66. Seidel, R., Mertig, M., Pompe, W.: Scanning force microscopy of DNA metallization. Surf. Interface Anal. 33, 151–154 (2002)

    Article  CAS  Google Scholar 

  67. Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y., Yan, H.: Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009)

    Article  CAS  Google Scholar 

  68. Shenton, W., Pum, D., Sleytr, U.B., Mann, S.: Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389, 585–587 (1997)

    Article  CAS  Google Scholar 

  69. Sleytr, U.B., Messner, P., Pum, D., Sara, M.: Crystalline bacterial cell surface proteins. Academic Press, San Diego (1996)

    Google Scholar 

  70. Szczech, J.B., Megaridis, C.M.: Ink jet processing of metallic nanoparticle suspensions for electronic circuitry fabrication. Microscale Thermophys. Eng. 8(4), 327–339 (2004)

    Article  CAS  Google Scholar 

  71. Taeger, S., Mertig, M.: Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis. Int. J. Mater. Res. 98, 742–748 (2007)

    CAS  Google Scholar 

  72. Taeger, S., Sickert, D., Atanasov, P., Eckstein, G., Mertig, M.: Self-assembly of carbon nanotube field-effect transistors by ac-dielectrophoresis. Phys. Stat. Sol. B 243(33), 585–3358 (2006)

    Google Scholar 

  73. Torimoto, T., Yamashita, M., Kuwabata, S., Sakata, T., Mori, H., Yoneyama, H.J.: Fabrication of CdS nanoparticle chains along DNA double strands. J. Phys. Chem. B 103, 8799–8803 (1999)

    Article  CAS  Google Scholar 

  74. Türke, A., Fischer, W.J., Adler, H.J., Pich, A.: Microwave-assisted synthesis of hybrid colloids for design of conducting films. Polymer 51, 4706–4712 (2010)

    Article  Google Scholar 

  75. Wahl, R., Engelhardt, H., Pompe, W., Mertig, M.: Multivariate statistical analysis of two-dimensional metal cluster arrays grown in vitro on a bacterial surface layer. Chem. Mater. 17, 1887–1894 (2005)

    Article  CAS  Google Scholar 

  76. Williams, B.A.R., Lund, K., Liu, Y., Yan, H., Chaput, J.C.: Self-assembled peptide nanoarrays: an approach to studying protein-protein interactions. Angew. Chem. 119, 3111–3114 (2007)

    Article  Google Scholar 

  77. Willner, I., Baron, R., Willner, B.: Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens. Bioelectron. 22, 1841–1852 (2007)

    Article  CAS  Google Scholar 

  78. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)

    Article  CAS  Google Scholar 

  79. Zheng, J., Constantinou, P.E., Micheel, C., Alivisatos, A.P., Kiehl, R.A., Seeman, N.C.: Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. NanoLetters 6, 1502–1504 (2006)

    Article  CAS  Google Scholar 

  80. Zimmermann, R.M., Cox, E.C.: DNA stretching on functionalized gold surfaces. Nucleic Acids Res. 22, 492–497 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Joachim Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, WJ., Mertig, M. (2012). Nanopatterning and Self-Assembly in Microsystems: An Overview. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_9

Download citation

Publish with us

Policies and ethics