Skip to main content

Mechanisms of Metasomatism and Metamorphism on the Local Mineral Scale: The Role of Dissolution-Reprecipitation During Mineral Re-equilibration

  • Chapter
  • First Online:
Metasomatism and the Chemical Transformation of Rock

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

Metamorphism and metasomatism both involve the re-equilibration of mineral assemblages due to changes in pressure, temperature and/or chemical environment. Both processes involve material transport but on different length scales, and therefore every metamorphic reaction is metasomatic on a local scale. Fluids provide a transport mechanism which is orders of magnitude faster than solid state diffusion and induce re-equilibration through dissolution of parent phases and reprecipitation of products. This chapter deals with some of the questions related to such processes, including the mechanisms of fluid transport through low permeability rocks, how coupling between dissolution and precipitation retains the volume of a rock during metamorphism and metasomatism, and how textural criteria are used to define mechanisms of reactions. These issues are illustrated by examples taken from experiments as well as reactions in nature including a review of some aspects of the transformation of aragonite to calcite, the albite to jadeite + quartz reaction, albitization, the origin of compositional zoning and inclusions in apatite, garnet replacement textures during eclogitization and the reaction mechanisms that produce corona textures. The chapter ends with a summary of the mechanism of pseudomorphic replacement by interface-coupled dissolution-precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ague JJ (1994) Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut. II: Channelized fluid flow and the growth of staurolite and kyanite. Am J Sci 294:1061–1134

    Article  Google Scholar 

  • Ague JJ (2003) Fluid flow in the deep crust. In: Treatise on geochemistry, vol 3.06. Elsevier, Amsterdam, pp 195–228

    Chapter  Google Scholar 

  • Austrheim H (1987) Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth Planet Sci Lett 81:221–232

    Article  Google Scholar 

  • Austrheim H, Griffin WL (1985) Shear deformation and eclogite formation within granulite-facies anorthosites of the Bergen arcs, Western Norway. Chem Geol 50:267–281

    Article  Google Scholar 

  • Austrheim H, Erambert M, Engvik AK (1997) Processing of crust in the root zone of the Caledonian continental collision zone: the role of eclogitzation. In: Touret JLR, Austrheim H (eds) Collision orogens: zones of active transfer between crust and mantle, vol 273, Tectonophysics., pp 129–156

    Google Scholar 

  • Bingen B, Davis WJ, Austrheim H (2001) Zircon U-Pb geochronology in the Bergen arc eclogites and the proterozoic protolith, and implications for the pre-scandian evolution of the Caledonides in western Norway. Geol Soc Am Bull 113:640–649

    Article  Google Scholar 

  • Bjørnerud MG, Austrheim H, Lund MG (2002) Processes leading to eclogitization (densification) of subducted and tectonically buried crust. J Geophys Res Solid Earth 107:2252–2269

    Article  Google Scholar 

  • Bodart DE (1968) On the paragenesis of albitites. Nor Geol Tids 48:269–280

    Google Scholar 

  • Boundy TM, Fountain DM, Austrheim H (1992) Structural development and petrofabrics of eclogite facies shear zones, Bergen Arcs, western Norway: implications for deep crustal deformational processes. J Metam Geol 10:127–146

    Article  Google Scholar 

  • Cardew PT, Davey RJ (1985) The kinetics of solvent-mediated phase transformations. Proc R Soc A 398:415–428

    Article  Google Scholar 

  • Carlson WD, Rosenfeld JL (1981) Optical determination of topotactic aragonite-calcite growth kinetics: metamorphic implications. J Geol 89:615–638

    Article  Google Scholar 

  • Carmichael DM (1969) On the mechanism of prograde metamorphic reactions in quartz-bearing pelitic rocks. Contrib Miner Petrol 20:244–267

    Article  Google Scholar 

  • Cartwright I (1997) Permeability generation and resetting of tracers during metamorphic fluid flow: implications for advection-dispersion models. Contrib Miner Petrol 129:198–208

    Article  Google Scholar 

  • Cox SF, Etheridge MA (1989) Coupled grain-scale dilatancy and mass transfer during deformation at high fluid pressures: examples from Mt Lyell, Tasmania. Journ Struct Geol 11:147–162

    Article  Google Scholar 

  • Elliott RB (1966) The association of amphibolite and albitite, Kragero, south Norway. Geol Mag 103:1–7

    Article  Google Scholar 

  • Engvik AK, Putnis A, Fitz Gerald JD, Austrheim H (2008) Albitisation of granitic rocks: the mechanism of replacement of oligoclase by albite. Can Miner 46:1401–1415

    Article  Google Scholar 

  • Engvik AK, Golla-Schindler U, Berndt-Gerdes J, Austrheim H, Putnis A (2009) Intragranular replacement of chlorapatite by hydroxy-fluor-apatite during metasomatism. Lithos 112:236–246

    Article  Google Scholar 

  • Erambert M, Austrheim H (1993) The effect of fluid and deformation on zoning and inclusion patterns in poly-metamorphic garnets. Contrib Miner Petrol 115:204–214

    Article  Google Scholar 

  • Ferry JM (2000) Patterns of mineral occurrence in metamorphic rocks. Am Miner 85:1573–1588

    Google Scholar 

  • Fisher GW (1973) Nonequilibrium thermodynamics as a model for diffusion-controlled metamorphic processes. Am J Sci 273:897–924

    Article  Google Scholar 

  • Frost HJ, Ashby MF (1982) Deformation – mechanism maps – the plasticity and creep of metals and ceramics. Pergamon, New York

    Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek T (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Griffin WL (1972) Formation of eclogites and coronas in anorthosites, Bergen Arcs, Norway. Geol Soc Am Mem 135:37–63

    Google Scholar 

  • Harlov DE, Förster H-J, Nijland TG (2002) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part I Chlorapatite Am Miner 87:245–261

    Google Scholar 

  • Harlov DE, Förster H-J (2003) Fluid-induced nucleation of (Y + REE)- phosphate minerals within apatite: nature and experiment. Part II Fluorapatite Am Miner 88:1209–1229

    Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Miner Petrol 150:268–286

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contrib Miner Petrol 162:329–348

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Miner 93:806–820

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Met Geol 16:309–343

    Article  Google Scholar 

  • Hövelmann J, Putnis A, Geisler T, Schmidt BC, Golla-Schindler U (2010) The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib Miner Petrol 159:43–59

    Article  Google Scholar 

  • Jamtveit B, Bucher-Nurminen K, Austrheim H (1990) Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen arcs, western Norway. Contrib Miner Petrol 104:184–193

    Article  Google Scholar 

  • Jamtveit B, Austrheim H, Malthe-Sørenssen A (2000) Accelerated hydration of the Earth’s crust induced by stress perturbation. Nature 408:75–78

    Article  Google Scholar 

  • Jamtveit B, Putnis CV, Malthe-Sørenssen A (2009) Reaction induced fracturing during replacement processes. Contrib Miner Petrol 157:127–133

    Article  Google Scholar 

  • Jamtveit B, Austrheim H (2010) Metamorphism: the role of fluids. Elements 6:153–158

    Article  Google Scholar 

  • Joesten R (1977) Evolution of mineral assemblage zoning in diffusion metasomatism. Geochim Cosmochim Acta 41:649–670

    Article  Google Scholar 

  • King HE, Plümper O, Putnis A (2010) The effect of secondary phase formation on the carbonation of olivine. Envir Sci Tech 44:6503–6509

    Article  Google Scholar 

  • Kryza R, Willner W, Massonne H-J, Muszyński A, Schertl H-P (2011) Blueschist-facies metamorphism in the Kaczawa Mountains (Sudetes, SW Poland) of the Central-European Variscides: P-T constraints by a jadeite-bearing metatrachyte. Min Mag 75:241–262

    Article  Google Scholar 

  • Labotka TC, Cole DR, Fayek M, Riciputi LR, Staderman FJ (2004) Coupled cation and oxygen exchange between alkali feldspar and aqueous chloride solution. Am Miner 89:1822–1825

    Google Scholar 

  • Lindgren W (1912) The nature of replacement Econ. Geology 7:521–535

    Google Scholar 

  • Lindgren W (1918) Volume changes in metamorphism. Journ Geol 26:542–554

    Article  Google Scholar 

  • Lund MG, Austrheim H (2004) High-pressure metamorphism and deep crustal seismicity: evidence from contemporanous formation of pseudotachylytes and eclogite facies coronas. Tectonophysics 372:59–83

    Article  Google Scholar 

  • MacDonald AH, Fyfe WS (1985) Rate of serpentinisation in seafloor environments. Tectonophysics 116:123–135

    Article  Google Scholar 

  • Malthe-Sørenssen A, Jamtveit B, Meakin P (2006) Fracture patterns generated by diffusion controlled volume changing reactions. Phys Rev Lett 96:245501

    Article  Google Scholar 

  • Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 223:1–16

    Article  Google Scholar 

  • Martín-García R, Alonso-Zarza AM, Martín-Pérez A (2009) Loss of primary texture and geochemical signatures in speleothems due to diagenesis: evidences from Castañar Cave, Spain. Sediment Geol 221:141–149

    Article  Google Scholar 

  • Mazzullo SJ (1980) Calcite pseudospar replacive of marine acicular aragonite, and implications for aragonite cement diagenesis. J Sediment Petrol 50:409–422

    Google Scholar 

  • Merino E, Nahon D, Wang Y (1993) Kinetics and mass transfer in pseudomorphic replacement; application to replacement of parent minerals and kaolinite by Al, Fe and Mn oxides during weathering. Am J Sci 293:135–155

    Article  Google Scholar 

  • Merino E, Banerjee A (2008) Terra rossa genesis, implications for karst, and eolian dust: a geodynamic thread. Journ Geol 116:62–75

    Article  Google Scholar 

  • Moody JB, Jenkins JE, Meyer D (1985) An experimental investigation of the albitization of plagioclase. Can Miner 23:583–596

    Google Scholar 

  • Nahon D, Merino E (1997) Pseudomorphic replacement in tropical weathering: evidence, geochemical consequences, and kinetic-rheological origin. Am J Sci 297:393–417

    Article  Google Scholar 

  • Niedermeier DRD, Putnis A, Geisler T, Golla-Schindler U, Putnis CV (2009) The mechanism of cation and oxygen exchange in alkali feldspars under hydrothermal conditions. Contrib Miner Petrol 157:65–76

    Article  Google Scholar 

  • Norberg N, Neusser G, Wirth R, Harlov D (2011) Microstructural evolution during experimental albitization of K-rich alkali feldspar. Contrib Miner Petrol 162:531–546

    Article  Google Scholar 

  • O’Neil JR, Taylor HP (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Miner 52:1414–1437

    Google Scholar 

  • Perdikouri C, Kasioptas A, Putnis CV, Putnis A (2008) The effect of fluid composition on the mechanism of the aragonite to calcite transition. Miner Mag 72:111–114

    Article  Google Scholar 

  • Perdikouri C, Kasioptas A, Schmidt BC, Geisler T, Putnis A (2011) Experimental study of the aragonite to calcite transition in aqueous solution. Geochim Cosmochim Acta 75:6211–6224

    Google Scholar 

  • Perez R, Boles AR (2005) An empirically derived kinetic model for albitization of detrital plagioclase. Am J Sci 305:312–343

    Article  Google Scholar 

  • Philpotts A, Ague JJ (2009) Principles of igneous and metamorphic petrology. Cambridge University Press, Cambridge

    Google Scholar 

  • Pollok K, Lloyd GE, Austrheim H, Putnis A (2008) Complex replacement patterns in garnets from Bergen Arcs eclogites: A combined EBSD and analytical TEM study. Chemie der Erde 68:177–191

    Article  Google Scholar 

  • Pollok K, Putnis CV, Putnis A (2011) Mineral replacement reactions in solid solution-aqueous solution systems: volume changes, reactions paths and end-points using the example of model salt systems. Am J Sci 311:211–236

    Article  Google Scholar 

  • Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Miner Mag 66:689–708

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. In: Oelkers EH, Schott J (eds) Thermodynamics and kinetics of water-rock interaction, vol 70, Reviews in mineralogy & geochemistry. Mineralogical Society of America, Chantilly, pp 87–124

    Google Scholar 

  • Putnis A, McConnell JDC (1980) Principles of mineral behaviour. Blackwell, Oxford

    Google Scholar 

  • Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180:1783–1786

    Article  Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid induced processes: metasomatism and metamorphism. Geofluids 10:254–269

    Google Scholar 

  • Putnis CV, Mezger K (2004) A mechanism of mineral replacement: isotope tracing in the model system KCl-KBr-H2O. Geochim Cosmochim Acta 68:2839–2848

    Article  Google Scholar 

  • Putnis CV, Tsukamoto K, Nishimura Y (2005) Direct observations of pseudomorphism: compositional and textural evolution at a fluid-solid interface. Am Mineral 90:1909–1912

    Article  Google Scholar 

  • Putnis CV, Geisler T, Schmid-Beurmann P, Stephan T, Giampaolo C (2007) An experimental study of the replacement of leucite by analcime. Am Mineral 92:19–26

    Article  Google Scholar 

  • Read HH (1957) The granite controversy. Murby, London

    Google Scholar 

  • Rumble D, Spear FS (1983) Oxygen-isotope equilibration and permeability enhancement during regional metamorphism. J Geol Soc London 140:619–628

    Article  Google Scholar 

  • Schneider J, Bosch D, Monie P, Bruguier O (2007) Micro-scale element migration during eclogitisation in the Bergen arcs (Norway): a case study on the role of fluids and deformation. Lithos 96:325–352

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Wirth R, Ingrin J (2007) Contrasting response of ThSiO4 and monazite to natural irradiation. Eur J Miner 19:7–14

    Article  Google Scholar 

  • Shigeno M, Mori Y, Nishiyama T (2005) Reaction microtextures in jadeitites from Nishisonogi metamorphic rocks, Kyushu, Japan. Journ Miner Petrol Sci 100:237–246

    Article  Google Scholar 

  • Straume AK, Austrheim H (1999) The importance of fracturing during retro-metamorphism of eclogites. J Metam Geol 17:637–652

    Article  Google Scholar 

  • Turner FJ, Verhoogen J (1951) Igneous and metamorphic petrology. McGraw Hill, New York

    Google Scholar 

  • Turner FJ, Verhoogen J (1960) Igneous and metamorphic petrology, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8- KAlSi3O8-SiO2-H2O, vol 74, Geol Soc Am Mem. Geological Society of America, Washington

    Google Scholar 

  • Vernon RH, White RW, Clarke GL (2008) False metamorphic events inferred from misinterpretation of microstructural evidence and P-T data. J Metam Geol 26:437–449

    Article  Google Scholar 

  • Wang X, Liou JG (1991) Regional ultrahigh-pressure coesite-bearing eclogitic terrane in central China: evidence from country rocks, gneiss, marble and metapelite. Geology 19:933–936

    Article  Google Scholar 

  • Wenk H-R (1976) Electron microscopy in mineralogy. Springer, Berlin

    Book  Google Scholar 

  • Xia F, Brugger J, Chen G, Ngothai Y, O’Neill B, Putnis A, Pring A (2009a) Mechanism and kinetics of pseudomorphic mineral replacement reactions: a case study of the replacement of pentlandite by violarite. Geochim Cosmochim Acta 73:1945–1969

    Article  Google Scholar 

  • Xia F, Brugger J, Ngothai Y, O’Neill B, Chen G, Pring A (2009b) Three dimensional ordered arrays of nanozeolites with uniform size and orientation by a pseudomorphic coupled dissolution-reprecipitation replacement route. Cryst Growth Des 9:4902–4906

    Article  Google Scholar 

Download references

Acknowledgements

This chapter has benefitted from discussions with Muriel Erambert, Bjørn Jamtveit, Timm John and Christine Putnis. We thank Ted Labotka and Nikolaus Norberg for suggestions on an earlier version of the manuscript. The work has been supported by funding from the EU Initial Training Network: Mechanisms of Mineral Replacement – Delta-Min: www.delta-min.com (PITN-GA-2008-215360), a Humboldt Foundation Research Award to H.A. and grants from the Norwegian Research Council to the Norwegian Center of Excellence - Physics of Geological Processes (PGP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Putnis .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Putnis, A., Austrheim, H. (2013). Mechanisms of Metasomatism and Metamorphism on the Local Mineral Scale: The Role of Dissolution-Reprecipitation During Mineral Re-equilibration. In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28394-9_5

Download citation

Publish with us

Policies and ethics